Metamath Proof Explorer


Theorem intmin2

Description: Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003)

Ref Expression
Hypothesis intmin2.1 𝐴 ∈ V
Assertion intmin2 { 𝑥𝐴𝑥 } = 𝐴

Proof

Step Hyp Ref Expression
1 intmin2.1 𝐴 ∈ V
2 rabab { 𝑥 ∈ V ∣ 𝐴𝑥 } = { 𝑥𝐴𝑥 }
3 2 inteqi { 𝑥 ∈ V ∣ 𝐴𝑥 } = { 𝑥𝐴𝑥 }
4 intmin ( 𝐴 ∈ V → { 𝑥 ∈ V ∣ 𝐴𝑥 } = 𝐴 )
5 1 4 ax-mp { 𝑥 ∈ V ∣ 𝐴𝑥 } = 𝐴
6 3 5 eqtr3i { 𝑥𝐴𝑥 } = 𝐴