Metamath Proof Explorer


Theorem intmin3

Description: Under subset ordering, the intersection of a class abstraction is less than or equal to any of its members. (Contributed by NM, 3-Jul-2005)

Ref Expression
Hypotheses intmin3.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
intmin3.3 𝜓
Assertion intmin3 ( 𝐴𝑉 { 𝑥𝜑 } ⊆ 𝐴 )

Proof

Step Hyp Ref Expression
1 intmin3.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 intmin3.3 𝜓
3 1 elabg ( 𝐴𝑉 → ( 𝐴 ∈ { 𝑥𝜑 } ↔ 𝜓 ) )
4 2 3 mpbiri ( 𝐴𝑉𝐴 ∈ { 𝑥𝜑 } )
5 intss1 ( 𝐴 ∈ { 𝑥𝜑 } → { 𝑥𝜑 } ⊆ 𝐴 )
6 4 5 syl ( 𝐴𝑉 { 𝑥𝜑 } ⊆ 𝐴 )