| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssintab | ⊢ ( 𝐴  ⊆  ∩  { 𝑥  ∣  𝜑 }  ↔  ∀ 𝑥 ( 𝜑  →  𝐴  ⊆  𝑥 ) ) | 
						
							| 2 |  | simpr | ⊢ ( ( 𝐴  ⊆  𝑥  ∧  𝜑 )  →  𝜑 ) | 
						
							| 3 |  | ancr | ⊢ ( ( 𝜑  →  𝐴  ⊆  𝑥 )  →  ( 𝜑  →  ( 𝐴  ⊆  𝑥  ∧  𝜑 ) ) ) | 
						
							| 4 | 2 3 | impbid2 | ⊢ ( ( 𝜑  →  𝐴  ⊆  𝑥 )  →  ( ( 𝐴  ⊆  𝑥  ∧  𝜑 )  ↔  𝜑 ) ) | 
						
							| 5 | 4 | imbi1d | ⊢ ( ( 𝜑  →  𝐴  ⊆  𝑥 )  →  ( ( ( 𝐴  ⊆  𝑥  ∧  𝜑 )  →  𝑦  ∈  𝑥 )  ↔  ( 𝜑  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 6 | 5 | alimi | ⊢ ( ∀ 𝑥 ( 𝜑  →  𝐴  ⊆  𝑥 )  →  ∀ 𝑥 ( ( ( 𝐴  ⊆  𝑥  ∧  𝜑 )  →  𝑦  ∈  𝑥 )  ↔  ( 𝜑  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 7 |  | albi | ⊢ ( ∀ 𝑥 ( ( ( 𝐴  ⊆  𝑥  ∧  𝜑 )  →  𝑦  ∈  𝑥 )  ↔  ( 𝜑  →  𝑦  ∈  𝑥 ) )  →  ( ∀ 𝑥 ( ( 𝐴  ⊆  𝑥  ∧  𝜑 )  →  𝑦  ∈  𝑥 )  ↔  ∀ 𝑥 ( 𝜑  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ∀ 𝑥 ( 𝜑  →  𝐴  ⊆  𝑥 )  →  ( ∀ 𝑥 ( ( 𝐴  ⊆  𝑥  ∧  𝜑 )  →  𝑦  ∈  𝑥 )  ↔  ∀ 𝑥 ( 𝜑  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 9 | 1 8 | sylbi | ⊢ ( 𝐴  ⊆  ∩  { 𝑥  ∣  𝜑 }  →  ( ∀ 𝑥 ( ( 𝐴  ⊆  𝑥  ∧  𝜑 )  →  𝑦  ∈  𝑥 )  ↔  ∀ 𝑥 ( 𝜑  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 10 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 11 | 10 | elintab | ⊢ ( 𝑦  ∈  ∩  { 𝑥  ∣  ( 𝐴  ⊆  𝑥  ∧  𝜑 ) }  ↔  ∀ 𝑥 ( ( 𝐴  ⊆  𝑥  ∧  𝜑 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 12 | 10 | elintab | ⊢ ( 𝑦  ∈  ∩  { 𝑥  ∣  𝜑 }  ↔  ∀ 𝑥 ( 𝜑  →  𝑦  ∈  𝑥 ) ) | 
						
							| 13 | 9 11 12 | 3bitr4g | ⊢ ( 𝐴  ⊆  ∩  { 𝑥  ∣  𝜑 }  →  ( 𝑦  ∈  ∩  { 𝑥  ∣  ( 𝐴  ⊆  𝑥  ∧  𝜑 ) }  ↔  𝑦  ∈  ∩  { 𝑥  ∣  𝜑 } ) ) | 
						
							| 14 | 13 | eqrdv | ⊢ ( 𝐴  ⊆  ∩  { 𝑥  ∣  𝜑 }  →  ∩  { 𝑥  ∣  ( 𝐴  ⊆  𝑥  ∧  𝜑 ) }  =  ∩  { 𝑥  ∣  𝜑 } ) |