Step |
Hyp |
Ref |
Expression |
1 |
|
ssintab |
⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝜑 → 𝐴 ⊆ 𝑥 ) ) |
2 |
|
simpr |
⊢ ( ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) → 𝜑 ) |
3 |
|
ancr |
⊢ ( ( 𝜑 → 𝐴 ⊆ 𝑥 ) → ( 𝜑 → ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) ) ) |
4 |
2 3
|
impbid2 |
⊢ ( ( 𝜑 → 𝐴 ⊆ 𝑥 ) → ( ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) ↔ 𝜑 ) ) |
5 |
4
|
imbi1d |
⊢ ( ( 𝜑 → 𝐴 ⊆ 𝑥 ) → ( ( ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) → 𝑦 ∈ 𝑥 ) ↔ ( 𝜑 → 𝑦 ∈ 𝑥 ) ) ) |
6 |
5
|
alimi |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝐴 ⊆ 𝑥 ) → ∀ 𝑥 ( ( ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) → 𝑦 ∈ 𝑥 ) ↔ ( 𝜑 → 𝑦 ∈ 𝑥 ) ) ) |
7 |
|
albi |
⊢ ( ∀ 𝑥 ( ( ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) → 𝑦 ∈ 𝑥 ) ↔ ( 𝜑 → 𝑦 ∈ 𝑥 ) ) → ( ∀ 𝑥 ( ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) → 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑥 ( 𝜑 → 𝑦 ∈ 𝑥 ) ) ) |
8 |
6 7
|
syl |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝐴 ⊆ 𝑥 ) → ( ∀ 𝑥 ( ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) → 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑥 ( 𝜑 → 𝑦 ∈ 𝑥 ) ) ) |
9 |
1 8
|
sylbi |
⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∣ 𝜑 } → ( ∀ 𝑥 ( ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) → 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑥 ( 𝜑 → 𝑦 ∈ 𝑥 ) ) ) |
10 |
|
vex |
⊢ 𝑦 ∈ V |
11 |
10
|
elintab |
⊢ ( 𝑦 ∈ ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) } ↔ ∀ 𝑥 ( ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) → 𝑦 ∈ 𝑥 ) ) |
12 |
10
|
elintab |
⊢ ( 𝑦 ∈ ∩ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝜑 → 𝑦 ∈ 𝑥 ) ) |
13 |
9 11 12
|
3bitr4g |
⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∣ 𝜑 } → ( 𝑦 ∈ ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) } ↔ 𝑦 ∈ ∩ { 𝑥 ∣ 𝜑 } ) ) |
14 |
13
|
eqrdv |
⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∣ 𝜑 } → ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) } = ∩ { 𝑥 ∣ 𝜑 } ) |