Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The intersection of a class
intminss
Metamath Proof Explorer
Description: Under subset ordering, the intersection of a restricted class
abstraction is less than or equal to any of its members. (Contributed by NM , 7-Sep-2013)
Ref
Expression
Hypothesis
intminss.1
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
Assertion
intminss
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) → ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ⊆ 𝐴 )
Proof
Step
Hyp
Ref
Expression
1
intminss.1
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
2
1
elrab
⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) )
3
intss1
⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } → ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ⊆ 𝐴 )
4
2 3
sylbir
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) → ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ⊆ 𝐴 )