Step |
Hyp |
Ref |
Expression |
1 |
|
intnat.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
intnat.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
intnat.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
intnat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ AtLat ) |
7 |
6
|
ad2antrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ 𝑌 ≤ 𝑋 ) ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐴 ) → 𝐾 ∈ AtLat ) |
8 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
9 |
8 4
|
atn0 |
⊢ ( ( 𝐾 ∈ AtLat ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐴 ) → ( 𝑋 ∧ 𝑌 ) ≠ ( 0. ‘ 𝐾 ) ) |
10 |
7 9
|
sylancom |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ 𝑌 ≤ 𝑋 ) ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐴 ) → ( 𝑋 ∧ 𝑌 ) ≠ ( 0. ‘ 𝐾 ) ) |
11 |
10
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ 𝑌 ≤ 𝑋 ) → ( ( 𝑋 ∧ 𝑌 ) ∈ 𝐴 → ( 𝑋 ∧ 𝑌 ) ≠ ( 0. ‘ 𝐾 ) ) ) |
12 |
|
simpll1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ 𝑌 ≤ 𝑋 ) ∧ 𝑌 ∈ 𝐴 ) → 𝐾 ∈ HL ) |
13 |
12
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ 𝑌 ≤ 𝑋 ) ∧ 𝑌 ∈ 𝐴 ) → 𝐾 ∈ Lat ) |
14 |
|
simpll2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ 𝑌 ≤ 𝑋 ) ∧ 𝑌 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) |
15 |
|
simpll3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ 𝑌 ≤ 𝑋 ) ∧ 𝑌 ∈ 𝐴 ) → 𝑌 ∈ 𝐵 ) |
16 |
1 3
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) = ( 𝑌 ∧ 𝑋 ) ) |
17 |
13 14 15 16
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ 𝑌 ≤ 𝑋 ) ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 ∧ 𝑌 ) = ( 𝑌 ∧ 𝑋 ) ) |
18 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ 𝑌 ≤ 𝑋 ) ∧ 𝑌 ∈ 𝐴 ) → ¬ 𝑌 ≤ 𝑋 ) |
19 |
12 5
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ 𝑌 ≤ 𝑋 ) ∧ 𝑌 ∈ 𝐴 ) → 𝐾 ∈ AtLat ) |
20 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ 𝑌 ≤ 𝑋 ) ∧ 𝑌 ∈ 𝐴 ) → 𝑌 ∈ 𝐴 ) |
21 |
1 2 3 8 4
|
atnle |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ¬ 𝑌 ≤ 𝑋 ↔ ( 𝑌 ∧ 𝑋 ) = ( 0. ‘ 𝐾 ) ) ) |
22 |
19 20 14 21
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ 𝑌 ≤ 𝑋 ) ∧ 𝑌 ∈ 𝐴 ) → ( ¬ 𝑌 ≤ 𝑋 ↔ ( 𝑌 ∧ 𝑋 ) = ( 0. ‘ 𝐾 ) ) ) |
23 |
18 22
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ 𝑌 ≤ 𝑋 ) ∧ 𝑌 ∈ 𝐴 ) → ( 𝑌 ∧ 𝑋 ) = ( 0. ‘ 𝐾 ) ) |
24 |
17 23
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ 𝑌 ≤ 𝑋 ) ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 ∧ 𝑌 ) = ( 0. ‘ 𝐾 ) ) |
25 |
24
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ 𝑌 ≤ 𝑋 ) → ( 𝑌 ∈ 𝐴 → ( 𝑋 ∧ 𝑌 ) = ( 0. ‘ 𝐾 ) ) ) |
26 |
25
|
necon3ad |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ 𝑌 ≤ 𝑋 ) → ( ( 𝑋 ∧ 𝑌 ) ≠ ( 0. ‘ 𝐾 ) → ¬ 𝑌 ∈ 𝐴 ) ) |
27 |
11 26
|
syld |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ 𝑌 ≤ 𝑋 ) → ( ( 𝑋 ∧ 𝑌 ) ∈ 𝐴 → ¬ 𝑌 ∈ 𝐴 ) ) |
28 |
27
|
impr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ¬ 𝑌 ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐴 ) ) → ¬ 𝑌 ∈ 𝐴 ) |