Description: If a class intersection is not a set, it must be the universe. (Contributed by NM, 3-Jul-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | intnex | ⊢ ( ¬ ∩ 𝐴 ∈ V ↔ ∩ 𝐴 = V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intex | ⊢ ( 𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V ) | |
2 | 1 | necon1bbii | ⊢ ( ¬ ∩ 𝐴 ∈ V ↔ 𝐴 = ∅ ) |
3 | inteq | ⊢ ( 𝐴 = ∅ → ∩ 𝐴 = ∩ ∅ ) | |
4 | int0 | ⊢ ∩ ∅ = V | |
5 | 3 4 | eqtrdi | ⊢ ( 𝐴 = ∅ → ∩ 𝐴 = V ) |
6 | 2 5 | sylbi | ⊢ ( ¬ ∩ 𝐴 ∈ V → ∩ 𝐴 = V ) |
7 | vprc | ⊢ ¬ V ∈ V | |
8 | eleq1 | ⊢ ( ∩ 𝐴 = V → ( ∩ 𝐴 ∈ V ↔ V ∈ V ) ) | |
9 | 7 8 | mtbiri | ⊢ ( ∩ 𝐴 = V → ¬ ∩ 𝐴 ∈ V ) |
10 | 6 9 | impbii | ⊢ ( ¬ ∩ 𝐴 ∈ V ↔ ∩ 𝐴 = V ) |