Step |
Hyp |
Ref |
Expression |
1 |
|
intpr.1 |
⊢ 𝐴 ∈ V |
2 |
|
intpr.2 |
⊢ 𝐵 ∈ V |
3 |
|
19.26 |
⊢ ( ∀ 𝑦 ( ( 𝑦 = 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ( 𝑦 = 𝐵 → 𝑥 ∈ 𝑦 ) ) ↔ ( ∀ 𝑦 ( 𝑦 = 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 = 𝐵 → 𝑥 ∈ 𝑦 ) ) ) |
4 |
|
vex |
⊢ 𝑦 ∈ V |
5 |
4
|
elpr |
⊢ ( 𝑦 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ) |
6 |
5
|
imbi1i |
⊢ ( ( 𝑦 ∈ { 𝐴 , 𝐵 } → 𝑥 ∈ 𝑦 ) ↔ ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) → 𝑥 ∈ 𝑦 ) ) |
7 |
|
jaob |
⊢ ( ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) → 𝑥 ∈ 𝑦 ) ↔ ( ( 𝑦 = 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ( 𝑦 = 𝐵 → 𝑥 ∈ 𝑦 ) ) ) |
8 |
6 7
|
bitri |
⊢ ( ( 𝑦 ∈ { 𝐴 , 𝐵 } → 𝑥 ∈ 𝑦 ) ↔ ( ( 𝑦 = 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ( 𝑦 = 𝐵 → 𝑥 ∈ 𝑦 ) ) ) |
9 |
8
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 } → 𝑥 ∈ 𝑦 ) ↔ ∀ 𝑦 ( ( 𝑦 = 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ( 𝑦 = 𝐵 → 𝑥 ∈ 𝑦 ) ) ) |
10 |
1
|
clel4 |
⊢ ( 𝑥 ∈ 𝐴 ↔ ∀ 𝑦 ( 𝑦 = 𝐴 → 𝑥 ∈ 𝑦 ) ) |
11 |
2
|
clel4 |
⊢ ( 𝑥 ∈ 𝐵 ↔ ∀ 𝑦 ( 𝑦 = 𝐵 → 𝑥 ∈ 𝑦 ) ) |
12 |
10 11
|
anbi12i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ ( ∀ 𝑦 ( 𝑦 = 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 = 𝐵 → 𝑥 ∈ 𝑦 ) ) ) |
13 |
3 9 12
|
3bitr4i |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 } → 𝑥 ∈ 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
14 |
|
vex |
⊢ 𝑥 ∈ V |
15 |
14
|
elint |
⊢ ( 𝑥 ∈ ∩ { 𝐴 , 𝐵 } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 } → 𝑥 ∈ 𝑦 ) ) |
16 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
17 |
13 15 16
|
3bitr4i |
⊢ ( 𝑥 ∈ ∩ { 𝐴 , 𝐵 } ↔ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) |
18 |
17
|
eqriv |
⊢ ∩ { 𝐴 , 𝐵 } = ( 𝐴 ∩ 𝐵 ) |