Metamath Proof Explorer


Theorem intpreima

Description: Preimage of an intersection. (Contributed by FL, 28-Apr-2012)

Ref Expression
Assertion intpreima ( ( Fun 𝐹𝐴 ≠ ∅ ) → ( 𝐹 𝐴 ) = 𝑥𝐴 ( 𝐹𝑥 ) )

Proof

Step Hyp Ref Expression
1 intiin 𝐴 = 𝑥𝐴 𝑥
2 1 imaeq2i ( 𝐹 𝐴 ) = ( 𝐹 𝑥𝐴 𝑥 )
3 iinpreima ( ( Fun 𝐹𝐴 ≠ ∅ ) → ( 𝐹 𝑥𝐴 𝑥 ) = 𝑥𝐴 ( 𝐹𝑥 ) )
4 2 3 eqtrid ( ( Fun 𝐹𝐴 ≠ ∅ ) → ( 𝐹 𝐴 ) = 𝑥𝐴 ( 𝐹𝑥 ) )