Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑥 ∈ V |
2 |
1
|
elint |
⊢ ( 𝑥 ∈ ∩ { 𝐴 , 𝐵 } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 } → 𝑥 ∈ 𝑦 ) ) |
3 |
|
vex |
⊢ 𝑦 ∈ V |
4 |
3
|
elpr |
⊢ ( 𝑦 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ) |
5 |
4
|
imbi1i |
⊢ ( ( 𝑦 ∈ { 𝐴 , 𝐵 } → 𝑥 ∈ 𝑦 ) ↔ ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) → 𝑥 ∈ 𝑦 ) ) |
6 |
|
jaob |
⊢ ( ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) → 𝑥 ∈ 𝑦 ) ↔ ( ( 𝑦 = 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ( 𝑦 = 𝐵 → 𝑥 ∈ 𝑦 ) ) ) |
7 |
5 6
|
bitri |
⊢ ( ( 𝑦 ∈ { 𝐴 , 𝐵 } → 𝑥 ∈ 𝑦 ) ↔ ( ( 𝑦 = 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ( 𝑦 = 𝐵 → 𝑥 ∈ 𝑦 ) ) ) |
8 |
7
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 } → 𝑥 ∈ 𝑦 ) ↔ ∀ 𝑦 ( ( 𝑦 = 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ( 𝑦 = 𝐵 → 𝑥 ∈ 𝑦 ) ) ) |
9 |
|
19.26 |
⊢ ( ∀ 𝑦 ( ( 𝑦 = 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ( 𝑦 = 𝐵 → 𝑥 ∈ 𝑦 ) ) ↔ ( ∀ 𝑦 ( 𝑦 = 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 = 𝐵 → 𝑥 ∈ 𝑦 ) ) ) |
10 |
2 8 9
|
3bitri |
⊢ ( 𝑥 ∈ ∩ { 𝐴 , 𝐵 } ↔ ( ∀ 𝑦 ( 𝑦 = 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 = 𝐵 → 𝑥 ∈ 𝑦 ) ) ) |
11 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
12 |
|
clel4g |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ 𝐴 ↔ ∀ 𝑦 ( 𝑦 = 𝐴 → 𝑥 ∈ 𝑦 ) ) ) |
13 |
|
clel4g |
⊢ ( 𝐵 ∈ 𝑊 → ( 𝑥 ∈ 𝐵 ↔ ∀ 𝑦 ( 𝑦 = 𝐵 → 𝑥 ∈ 𝑦 ) ) ) |
14 |
12 13
|
bi2anan9 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ ( ∀ 𝑦 ( 𝑦 = 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 = 𝐵 → 𝑥 ∈ 𝑦 ) ) ) ) |
15 |
11 14
|
bitr2id |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ∀ 𝑦 ( 𝑦 = 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 = 𝐵 → 𝑥 ∈ 𝑦 ) ) ↔ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ) |
16 |
10 15
|
syl5bb |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑥 ∈ ∩ { 𝐴 , 𝐵 } ↔ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ) |
17 |
16
|
alrimiv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∀ 𝑥 ( 𝑥 ∈ ∩ { 𝐴 , 𝐵 } ↔ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ) |
18 |
|
dfcleq |
⊢ ( ∩ { 𝐴 , 𝐵 } = ( 𝐴 ∩ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ∩ { 𝐴 , 𝐵 } ↔ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ) |
19 |
17 18
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∩ { 𝐴 , 𝐵 } = ( 𝐴 ∩ 𝐵 ) ) |