| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr1 |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 2 |
1
|
frnd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ran 𝐹 ⊆ 𝐵 ) |
| 3 |
1
|
fdmd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → dom 𝐹 = 𝐴 ) |
| 4 |
|
simpr2 |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → 𝐴 ≠ ∅ ) |
| 5 |
3 4
|
eqnetrd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → dom 𝐹 ≠ ∅ ) |
| 6 |
|
dm0rn0 |
⊢ ( dom 𝐹 = ∅ ↔ ran 𝐹 = ∅ ) |
| 7 |
6
|
necon3bii |
⊢ ( dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅ ) |
| 8 |
5 7
|
sylib |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ran 𝐹 ≠ ∅ ) |
| 9 |
|
simpr3 |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → 𝐴 ∈ Fin ) |
| 10 |
1
|
ffnd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → 𝐹 Fn 𝐴 ) |
| 11 |
|
dffn4 |
⊢ ( 𝐹 Fn 𝐴 ↔ 𝐹 : 𝐴 –onto→ ran 𝐹 ) |
| 12 |
10 11
|
sylib |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → 𝐹 : 𝐴 –onto→ ran 𝐹 ) |
| 13 |
|
fofi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ ran 𝐹 ) → ran 𝐹 ∈ Fin ) |
| 14 |
9 12 13
|
syl2anc |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ran 𝐹 ∈ Fin ) |
| 15 |
2 8 14
|
3jca |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ( ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ≠ ∅ ∧ ran 𝐹 ∈ Fin ) ) |
| 16 |
|
elfir |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ≠ ∅ ∧ ran 𝐹 ∈ Fin ) ) → ∩ ran 𝐹 ∈ ( fi ‘ 𝐵 ) ) |
| 17 |
15 16
|
syldan |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ∩ ran 𝐹 ∈ ( fi ‘ 𝐵 ) ) |