Description: Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | intsng | ⊢ ( 𝐴 ∈ 𝑉 → ∩ { 𝐴 } = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 | ⊢ { 𝐴 } = { 𝐴 , 𝐴 } | |
2 | 1 | inteqi | ⊢ ∩ { 𝐴 } = ∩ { 𝐴 , 𝐴 } |
3 | intprg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ∩ { 𝐴 , 𝐴 } = ( 𝐴 ∩ 𝐴 ) ) | |
4 | 3 | anidms | ⊢ ( 𝐴 ∈ 𝑉 → ∩ { 𝐴 , 𝐴 } = ( 𝐴 ∩ 𝐴 ) ) |
5 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
6 | 4 5 | eqtrdi | ⊢ ( 𝐴 ∈ 𝑉 → ∩ { 𝐴 , 𝐴 } = 𝐴 ) |
7 | 2 6 | eqtrid | ⊢ ( 𝐴 ∈ 𝑉 → ∩ { 𝐴 } = 𝐴 ) |