Metamath Proof Explorer


Theorem intsng

Description: Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion intsng ( 𝐴𝑉 { 𝐴 } = 𝐴 )

Proof

Step Hyp Ref Expression
1 dfsn2 { 𝐴 } = { 𝐴 , 𝐴 }
2 1 inteqi { 𝐴 } = { 𝐴 , 𝐴 }
3 intprg ( ( 𝐴𝑉𝐴𝑉 ) → { 𝐴 , 𝐴 } = ( 𝐴𝐴 ) )
4 3 anidms ( 𝐴𝑉 { 𝐴 , 𝐴 } = ( 𝐴𝐴 ) )
5 inidm ( 𝐴𝐴 ) = 𝐴
6 4 5 eqtrdi ( 𝐴𝑉 { 𝐴 , 𝐴 } = 𝐴 )
7 2 6 eqtrid ( 𝐴𝑉 { 𝐴 } = 𝐴 )