Metamath Proof Explorer


Theorem intssuni

Description: The intersection of a nonempty set is a subclass of its union. (Contributed by NM, 29-Jul-2006)

Ref Expression
Assertion intssuni ( 𝐴 ≠ ∅ → 𝐴 𝐴 )

Proof

Step Hyp Ref Expression
1 r19.2z ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦𝐴 𝑥𝑦 ) → ∃ 𝑦𝐴 𝑥𝑦 )
2 1 ex ( 𝐴 ≠ ∅ → ( ∀ 𝑦𝐴 𝑥𝑦 → ∃ 𝑦𝐴 𝑥𝑦 ) )
3 vex 𝑥 ∈ V
4 3 elint2 ( 𝑥 𝐴 ↔ ∀ 𝑦𝐴 𝑥𝑦 )
5 eluni2 ( 𝑥 𝐴 ↔ ∃ 𝑦𝐴 𝑥𝑦 )
6 2 4 5 3imtr4g ( 𝐴 ≠ ∅ → ( 𝑥 𝐴𝑥 𝐴 ) )
7 6 ssrdv ( 𝐴 ≠ ∅ → 𝐴 𝐴 )