Description: The intersection of a nonempty set is a subclass of its union. (Contributed by NM, 29-Jul-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | intssuni | ⊢ ( 𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.2z | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) → ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) | |
2 | 1 | ex | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) ) |
3 | vex | ⊢ 𝑥 ∈ V | |
4 | 3 | elint2 | ⊢ ( 𝑥 ∈ ∩ 𝐴 ↔ ∀ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) |
5 | eluni2 | ⊢ ( 𝑥 ∈ ∪ 𝐴 ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) | |
6 | 2 4 5 | 3imtr4g | ⊢ ( 𝐴 ≠ ∅ → ( 𝑥 ∈ ∩ 𝐴 → 𝑥 ∈ ∪ 𝐴 ) ) |
7 | 6 | ssrdv | ⊢ ( 𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴 ) |