Metamath Proof Explorer


Theorem intssuni2

Description: Subclass relationship for intersection and union. (Contributed by NM, 29-Jul-2006)

Ref Expression
Assertion intssuni2 ( ( 𝐴𝐵𝐴 ≠ ∅ ) → 𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 intssuni ( 𝐴 ≠ ∅ → 𝐴 𝐴 )
2 uniss ( 𝐴𝐵 𝐴 𝐵 )
3 1 2 sylan9ssr ( ( 𝐴𝐵𝐴 ≠ ∅ ) → 𝐴 𝐵 )