| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) → 𝐴 ⊆ Tarski ) |
| 2 |
1
|
sselda |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) ∧ 𝑡 ∈ 𝐴 ) → 𝑡 ∈ Tarski ) |
| 3 |
|
elinti |
⊢ ( 𝑧 ∈ ∩ 𝐴 → ( 𝑡 ∈ 𝐴 → 𝑧 ∈ 𝑡 ) ) |
| 4 |
3
|
imp |
⊢ ( ( 𝑧 ∈ ∩ 𝐴 ∧ 𝑡 ∈ 𝐴 ) → 𝑧 ∈ 𝑡 ) |
| 5 |
4
|
adantll |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) ∧ 𝑡 ∈ 𝐴 ) → 𝑧 ∈ 𝑡 ) |
| 6 |
|
tskpwss |
⊢ ( ( 𝑡 ∈ Tarski ∧ 𝑧 ∈ 𝑡 ) → 𝒫 𝑧 ⊆ 𝑡 ) |
| 7 |
2 5 6
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) ∧ 𝑡 ∈ 𝐴 ) → 𝒫 𝑧 ⊆ 𝑡 ) |
| 8 |
7
|
ralrimiva |
⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) → ∀ 𝑡 ∈ 𝐴 𝒫 𝑧 ⊆ 𝑡 ) |
| 9 |
|
ssint |
⊢ ( 𝒫 𝑧 ⊆ ∩ 𝐴 ↔ ∀ 𝑡 ∈ 𝐴 𝒫 𝑧 ⊆ 𝑡 ) |
| 10 |
8 9
|
sylibr |
⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) → 𝒫 𝑧 ⊆ ∩ 𝐴 ) |
| 11 |
|
tskpw |
⊢ ( ( 𝑡 ∈ Tarski ∧ 𝑧 ∈ 𝑡 ) → 𝒫 𝑧 ∈ 𝑡 ) |
| 12 |
2 5 11
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) ∧ 𝑡 ∈ 𝐴 ) → 𝒫 𝑧 ∈ 𝑡 ) |
| 13 |
12
|
ralrimiva |
⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) → ∀ 𝑡 ∈ 𝐴 𝒫 𝑧 ∈ 𝑡 ) |
| 14 |
|
vpwex |
⊢ 𝒫 𝑧 ∈ V |
| 15 |
14
|
elint2 |
⊢ ( 𝒫 𝑧 ∈ ∩ 𝐴 ↔ ∀ 𝑡 ∈ 𝐴 𝒫 𝑧 ∈ 𝑡 ) |
| 16 |
13 15
|
sylibr |
⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) → 𝒫 𝑧 ∈ ∩ 𝐴 ) |
| 17 |
10 16
|
jca |
⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) → ( 𝒫 𝑧 ⊆ ∩ 𝐴 ∧ 𝒫 𝑧 ∈ ∩ 𝐴 ) ) |
| 18 |
17
|
ralrimiva |
⊢ ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) → ∀ 𝑧 ∈ ∩ 𝐴 ( 𝒫 𝑧 ⊆ ∩ 𝐴 ∧ 𝒫 𝑧 ∈ ∩ 𝐴 ) ) |
| 19 |
|
elpwi |
⊢ ( 𝑧 ∈ 𝒫 ∩ 𝐴 → 𝑧 ⊆ ∩ 𝐴 ) |
| 20 |
|
rexnal |
⊢ ( ∃ 𝑡 ∈ 𝐴 ¬ 𝑧 ∈ 𝑡 ↔ ¬ ∀ 𝑡 ∈ 𝐴 𝑧 ∈ 𝑡 ) |
| 21 |
|
simpr |
⊢ ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) |
| 22 |
|
intex |
⊢ ( 𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V ) |
| 23 |
21 22
|
sylib |
⊢ ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ V ) |
| 24 |
23
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → ∩ 𝐴 ∈ V ) |
| 25 |
|
simplr |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝑧 ⊆ ∩ 𝐴 ) |
| 26 |
|
ssdomg |
⊢ ( ∩ 𝐴 ∈ V → ( 𝑧 ⊆ ∩ 𝐴 → 𝑧 ≼ ∩ 𝐴 ) ) |
| 27 |
24 25 26
|
sylc |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝑧 ≼ ∩ 𝐴 ) |
| 28 |
|
vex |
⊢ 𝑡 ∈ V |
| 29 |
|
intss1 |
⊢ ( 𝑡 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑡 ) |
| 30 |
29
|
ad2antrl |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → ∩ 𝐴 ⊆ 𝑡 ) |
| 31 |
|
ssdomg |
⊢ ( 𝑡 ∈ V → ( ∩ 𝐴 ⊆ 𝑡 → ∩ 𝐴 ≼ 𝑡 ) ) |
| 32 |
28 30 31
|
mpsyl |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → ∩ 𝐴 ≼ 𝑡 ) |
| 33 |
|
simprr |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → ¬ 𝑧 ∈ 𝑡 ) |
| 34 |
|
simplll |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝐴 ⊆ Tarski ) |
| 35 |
|
simprl |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝑡 ∈ 𝐴 ) |
| 36 |
34 35
|
sseldd |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝑡 ∈ Tarski ) |
| 37 |
25 30
|
sstrd |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝑧 ⊆ 𝑡 ) |
| 38 |
|
tsken |
⊢ ( ( 𝑡 ∈ Tarski ∧ 𝑧 ⊆ 𝑡 ) → ( 𝑧 ≈ 𝑡 ∨ 𝑧 ∈ 𝑡 ) ) |
| 39 |
36 37 38
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → ( 𝑧 ≈ 𝑡 ∨ 𝑧 ∈ 𝑡 ) ) |
| 40 |
39
|
ord |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → ( ¬ 𝑧 ≈ 𝑡 → 𝑧 ∈ 𝑡 ) ) |
| 41 |
33 40
|
mt3d |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝑧 ≈ 𝑡 ) |
| 42 |
41
|
ensymd |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝑡 ≈ 𝑧 ) |
| 43 |
|
domentr |
⊢ ( ( ∩ 𝐴 ≼ 𝑡 ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝐴 ≼ 𝑧 ) |
| 44 |
32 42 43
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → ∩ 𝐴 ≼ 𝑧 ) |
| 45 |
|
sbth |
⊢ ( ( 𝑧 ≼ ∩ 𝐴 ∧ ∩ 𝐴 ≼ 𝑧 ) → 𝑧 ≈ ∩ 𝐴 ) |
| 46 |
27 44 45
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝑧 ≈ ∩ 𝐴 ) |
| 47 |
46
|
rexlimdvaa |
⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) → ( ∃ 𝑡 ∈ 𝐴 ¬ 𝑧 ∈ 𝑡 → 𝑧 ≈ ∩ 𝐴 ) ) |
| 48 |
20 47
|
biimtrrid |
⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) → ( ¬ ∀ 𝑡 ∈ 𝐴 𝑧 ∈ 𝑡 → 𝑧 ≈ ∩ 𝐴 ) ) |
| 49 |
48
|
con1d |
⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) → ( ¬ 𝑧 ≈ ∩ 𝐴 → ∀ 𝑡 ∈ 𝐴 𝑧 ∈ 𝑡 ) ) |
| 50 |
|
vex |
⊢ 𝑧 ∈ V |
| 51 |
50
|
elint2 |
⊢ ( 𝑧 ∈ ∩ 𝐴 ↔ ∀ 𝑡 ∈ 𝐴 𝑧 ∈ 𝑡 ) |
| 52 |
49 51
|
imbitrrdi |
⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) → ( ¬ 𝑧 ≈ ∩ 𝐴 → 𝑧 ∈ ∩ 𝐴 ) ) |
| 53 |
52
|
orrd |
⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) → ( 𝑧 ≈ ∩ 𝐴 ∨ 𝑧 ∈ ∩ 𝐴 ) ) |
| 54 |
19 53
|
sylan2 |
⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ 𝒫 ∩ 𝐴 ) → ( 𝑧 ≈ ∩ 𝐴 ∨ 𝑧 ∈ ∩ 𝐴 ) ) |
| 55 |
54
|
ralrimiva |
⊢ ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) → ∀ 𝑧 ∈ 𝒫 ∩ 𝐴 ( 𝑧 ≈ ∩ 𝐴 ∨ 𝑧 ∈ ∩ 𝐴 ) ) |
| 56 |
|
eltsk2g |
⊢ ( ∩ 𝐴 ∈ V → ( ∩ 𝐴 ∈ Tarski ↔ ( ∀ 𝑧 ∈ ∩ 𝐴 ( 𝒫 𝑧 ⊆ ∩ 𝐴 ∧ 𝒫 𝑧 ∈ ∩ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝒫 ∩ 𝐴 ( 𝑧 ≈ ∩ 𝐴 ∨ 𝑧 ∈ ∩ 𝐴 ) ) ) ) |
| 57 |
23 56
|
syl |
⊢ ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) → ( ∩ 𝐴 ∈ Tarski ↔ ( ∀ 𝑧 ∈ ∩ 𝐴 ( 𝒫 𝑧 ⊆ ∩ 𝐴 ∧ 𝒫 𝑧 ∈ ∩ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝒫 ∩ 𝐴 ( 𝑧 ≈ ∩ 𝐴 ∨ 𝑧 ∈ ∩ 𝐴 ) ) ) ) |
| 58 |
18 55 57
|
mpbir2and |
⊢ ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ Tarski ) |