Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) → 𝐴 ⊆ Tarski ) |
2 |
1
|
sselda |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) ∧ 𝑡 ∈ 𝐴 ) → 𝑡 ∈ Tarski ) |
3 |
|
elinti |
⊢ ( 𝑧 ∈ ∩ 𝐴 → ( 𝑡 ∈ 𝐴 → 𝑧 ∈ 𝑡 ) ) |
4 |
3
|
imp |
⊢ ( ( 𝑧 ∈ ∩ 𝐴 ∧ 𝑡 ∈ 𝐴 ) → 𝑧 ∈ 𝑡 ) |
5 |
4
|
adantll |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) ∧ 𝑡 ∈ 𝐴 ) → 𝑧 ∈ 𝑡 ) |
6 |
|
tskpwss |
⊢ ( ( 𝑡 ∈ Tarski ∧ 𝑧 ∈ 𝑡 ) → 𝒫 𝑧 ⊆ 𝑡 ) |
7 |
2 5 6
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) ∧ 𝑡 ∈ 𝐴 ) → 𝒫 𝑧 ⊆ 𝑡 ) |
8 |
7
|
ralrimiva |
⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) → ∀ 𝑡 ∈ 𝐴 𝒫 𝑧 ⊆ 𝑡 ) |
9 |
|
ssint |
⊢ ( 𝒫 𝑧 ⊆ ∩ 𝐴 ↔ ∀ 𝑡 ∈ 𝐴 𝒫 𝑧 ⊆ 𝑡 ) |
10 |
8 9
|
sylibr |
⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) → 𝒫 𝑧 ⊆ ∩ 𝐴 ) |
11 |
|
tskpw |
⊢ ( ( 𝑡 ∈ Tarski ∧ 𝑧 ∈ 𝑡 ) → 𝒫 𝑧 ∈ 𝑡 ) |
12 |
2 5 11
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) ∧ 𝑡 ∈ 𝐴 ) → 𝒫 𝑧 ∈ 𝑡 ) |
13 |
12
|
ralrimiva |
⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) → ∀ 𝑡 ∈ 𝐴 𝒫 𝑧 ∈ 𝑡 ) |
14 |
|
vpwex |
⊢ 𝒫 𝑧 ∈ V |
15 |
14
|
elint2 |
⊢ ( 𝒫 𝑧 ∈ ∩ 𝐴 ↔ ∀ 𝑡 ∈ 𝐴 𝒫 𝑧 ∈ 𝑡 ) |
16 |
13 15
|
sylibr |
⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) → 𝒫 𝑧 ∈ ∩ 𝐴 ) |
17 |
10 16
|
jca |
⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ ∩ 𝐴 ) → ( 𝒫 𝑧 ⊆ ∩ 𝐴 ∧ 𝒫 𝑧 ∈ ∩ 𝐴 ) ) |
18 |
17
|
ralrimiva |
⊢ ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) → ∀ 𝑧 ∈ ∩ 𝐴 ( 𝒫 𝑧 ⊆ ∩ 𝐴 ∧ 𝒫 𝑧 ∈ ∩ 𝐴 ) ) |
19 |
|
elpwi |
⊢ ( 𝑧 ∈ 𝒫 ∩ 𝐴 → 𝑧 ⊆ ∩ 𝐴 ) |
20 |
|
rexnal |
⊢ ( ∃ 𝑡 ∈ 𝐴 ¬ 𝑧 ∈ 𝑡 ↔ ¬ ∀ 𝑡 ∈ 𝐴 𝑧 ∈ 𝑡 ) |
21 |
|
simpr |
⊢ ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) |
22 |
|
intex |
⊢ ( 𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V ) |
23 |
21 22
|
sylib |
⊢ ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ V ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → ∩ 𝐴 ∈ V ) |
25 |
|
simplr |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝑧 ⊆ ∩ 𝐴 ) |
26 |
|
ssdomg |
⊢ ( ∩ 𝐴 ∈ V → ( 𝑧 ⊆ ∩ 𝐴 → 𝑧 ≼ ∩ 𝐴 ) ) |
27 |
24 25 26
|
sylc |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝑧 ≼ ∩ 𝐴 ) |
28 |
|
vex |
⊢ 𝑡 ∈ V |
29 |
|
intss1 |
⊢ ( 𝑡 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑡 ) |
30 |
29
|
ad2antrl |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → ∩ 𝐴 ⊆ 𝑡 ) |
31 |
|
ssdomg |
⊢ ( 𝑡 ∈ V → ( ∩ 𝐴 ⊆ 𝑡 → ∩ 𝐴 ≼ 𝑡 ) ) |
32 |
28 30 31
|
mpsyl |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → ∩ 𝐴 ≼ 𝑡 ) |
33 |
|
simprr |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → ¬ 𝑧 ∈ 𝑡 ) |
34 |
|
simplll |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝐴 ⊆ Tarski ) |
35 |
|
simprl |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝑡 ∈ 𝐴 ) |
36 |
34 35
|
sseldd |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝑡 ∈ Tarski ) |
37 |
25 30
|
sstrd |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝑧 ⊆ 𝑡 ) |
38 |
|
tsken |
⊢ ( ( 𝑡 ∈ Tarski ∧ 𝑧 ⊆ 𝑡 ) → ( 𝑧 ≈ 𝑡 ∨ 𝑧 ∈ 𝑡 ) ) |
39 |
36 37 38
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → ( 𝑧 ≈ 𝑡 ∨ 𝑧 ∈ 𝑡 ) ) |
40 |
39
|
ord |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → ( ¬ 𝑧 ≈ 𝑡 → 𝑧 ∈ 𝑡 ) ) |
41 |
33 40
|
mt3d |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝑧 ≈ 𝑡 ) |
42 |
41
|
ensymd |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝑡 ≈ 𝑧 ) |
43 |
|
domentr |
⊢ ( ( ∩ 𝐴 ≼ 𝑡 ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝐴 ≼ 𝑧 ) |
44 |
32 42 43
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → ∩ 𝐴 ≼ 𝑧 ) |
45 |
|
sbth |
⊢ ( ( 𝑧 ≼ ∩ 𝐴 ∧ ∩ 𝐴 ≼ 𝑧 ) → 𝑧 ≈ ∩ 𝐴 ) |
46 |
27 44 45
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑡 ) ) → 𝑧 ≈ ∩ 𝐴 ) |
47 |
46
|
rexlimdvaa |
⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) → ( ∃ 𝑡 ∈ 𝐴 ¬ 𝑧 ∈ 𝑡 → 𝑧 ≈ ∩ 𝐴 ) ) |
48 |
20 47
|
syl5bir |
⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) → ( ¬ ∀ 𝑡 ∈ 𝐴 𝑧 ∈ 𝑡 → 𝑧 ≈ ∩ 𝐴 ) ) |
49 |
48
|
con1d |
⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) → ( ¬ 𝑧 ≈ ∩ 𝐴 → ∀ 𝑡 ∈ 𝐴 𝑧 ∈ 𝑡 ) ) |
50 |
|
vex |
⊢ 𝑧 ∈ V |
51 |
50
|
elint2 |
⊢ ( 𝑧 ∈ ∩ 𝐴 ↔ ∀ 𝑡 ∈ 𝐴 𝑧 ∈ 𝑡 ) |
52 |
49 51
|
syl6ibr |
⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) → ( ¬ 𝑧 ≈ ∩ 𝐴 → 𝑧 ∈ ∩ 𝐴 ) ) |
53 |
52
|
orrd |
⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ⊆ ∩ 𝐴 ) → ( 𝑧 ≈ ∩ 𝐴 ∨ 𝑧 ∈ ∩ 𝐴 ) ) |
54 |
19 53
|
sylan2 |
⊢ ( ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) ∧ 𝑧 ∈ 𝒫 ∩ 𝐴 ) → ( 𝑧 ≈ ∩ 𝐴 ∨ 𝑧 ∈ ∩ 𝐴 ) ) |
55 |
54
|
ralrimiva |
⊢ ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) → ∀ 𝑧 ∈ 𝒫 ∩ 𝐴 ( 𝑧 ≈ ∩ 𝐴 ∨ 𝑧 ∈ ∩ 𝐴 ) ) |
56 |
|
eltsk2g |
⊢ ( ∩ 𝐴 ∈ V → ( ∩ 𝐴 ∈ Tarski ↔ ( ∀ 𝑧 ∈ ∩ 𝐴 ( 𝒫 𝑧 ⊆ ∩ 𝐴 ∧ 𝒫 𝑧 ∈ ∩ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝒫 ∩ 𝐴 ( 𝑧 ≈ ∩ 𝐴 ∨ 𝑧 ∈ ∩ 𝐴 ) ) ) ) |
57 |
23 56
|
syl |
⊢ ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) → ( ∩ 𝐴 ∈ Tarski ↔ ( ∀ 𝑧 ∈ ∩ 𝐴 ( 𝒫 𝑧 ⊆ ∩ 𝐴 ∧ 𝒫 𝑧 ∈ ∩ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝒫 ∩ 𝐴 ( 𝑧 ≈ ∩ 𝐴 ∨ 𝑧 ∈ ∩ 𝐴 ) ) ) ) |
58 |
18 55 57
|
mpbir2and |
⊢ ( ( 𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ Tarski ) |