Step |
Hyp |
Ref |
Expression |
1 |
|
19.26 |
⊢ ( ∀ 𝑦 ( ( 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ( 𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦 ) ) ↔ ( ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦 ) ) ) |
2 |
|
elunant |
⊢ ( ( 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ 𝑦 ) ↔ ( ( 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ( 𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦 ) ) ) |
3 |
2
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ 𝑦 ) ↔ ∀ 𝑦 ( ( 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ( 𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦 ) ) ) |
4 |
|
vex |
⊢ 𝑥 ∈ V |
5 |
4
|
elint |
⊢ ( 𝑥 ∈ ∩ 𝐴 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦 ) ) |
6 |
4
|
elint |
⊢ ( 𝑥 ∈ ∩ 𝐵 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦 ) ) |
7 |
5 6
|
anbi12i |
⊢ ( ( 𝑥 ∈ ∩ 𝐴 ∧ 𝑥 ∈ ∩ 𝐵 ) ↔ ( ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦 ) ) ) |
8 |
1 3 7
|
3bitr4i |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ 𝑦 ) ↔ ( 𝑥 ∈ ∩ 𝐴 ∧ 𝑥 ∈ ∩ 𝐵 ) ) |
9 |
4
|
elint |
⊢ ( 𝑥 ∈ ∩ ( 𝐴 ∪ 𝐵 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ 𝑦 ) ) |
10 |
|
elin |
⊢ ( 𝑥 ∈ ( ∩ 𝐴 ∩ ∩ 𝐵 ) ↔ ( 𝑥 ∈ ∩ 𝐴 ∧ 𝑥 ∈ ∩ 𝐵 ) ) |
11 |
8 9 10
|
3bitr4i |
⊢ ( 𝑥 ∈ ∩ ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ ( ∩ 𝐴 ∩ ∩ 𝐵 ) ) |
12 |
11
|
eqriv |
⊢ ∩ ( 𝐴 ∪ 𝐵 ) = ( ∩ 𝐴 ∩ ∩ 𝐵 ) |