Metamath Proof Explorer


Theorem intun

Description: The class intersection of the union of two classes. Theorem 78 of Suppes p. 42. (Contributed by NM, 22-Sep-2002)

Ref Expression
Assertion intun ( 𝐴𝐵 ) = ( 𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 19.26 ( ∀ 𝑦 ( ( 𝑦𝐴𝑥𝑦 ) ∧ ( 𝑦𝐵𝑥𝑦 ) ) ↔ ( ∀ 𝑦 ( 𝑦𝐴𝑥𝑦 ) ∧ ∀ 𝑦 ( 𝑦𝐵𝑥𝑦 ) ) )
2 elunant ( ( 𝑦 ∈ ( 𝐴𝐵 ) → 𝑥𝑦 ) ↔ ( ( 𝑦𝐴𝑥𝑦 ) ∧ ( 𝑦𝐵𝑥𝑦 ) ) )
3 2 albii ( ∀ 𝑦 ( 𝑦 ∈ ( 𝐴𝐵 ) → 𝑥𝑦 ) ↔ ∀ 𝑦 ( ( 𝑦𝐴𝑥𝑦 ) ∧ ( 𝑦𝐵𝑥𝑦 ) ) )
4 vex 𝑥 ∈ V
5 4 elint ( 𝑥 𝐴 ↔ ∀ 𝑦 ( 𝑦𝐴𝑥𝑦 ) )
6 4 elint ( 𝑥 𝐵 ↔ ∀ 𝑦 ( 𝑦𝐵𝑥𝑦 ) )
7 5 6 anbi12i ( ( 𝑥 𝐴𝑥 𝐵 ) ↔ ( ∀ 𝑦 ( 𝑦𝐴𝑥𝑦 ) ∧ ∀ 𝑦 ( 𝑦𝐵𝑥𝑦 ) ) )
8 1 3 7 3bitr4i ( ∀ 𝑦 ( 𝑦 ∈ ( 𝐴𝐵 ) → 𝑥𝑦 ) ↔ ( 𝑥 𝐴𝑥 𝐵 ) )
9 4 elint ( 𝑥 ( 𝐴𝐵 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ( 𝐴𝐵 ) → 𝑥𝑦 ) )
10 elin ( 𝑥 ∈ ( 𝐴 𝐵 ) ↔ ( 𝑥 𝐴𝑥 𝐵 ) )
11 8 9 10 3bitr4i ( 𝑥 ( 𝐴𝐵 ) ↔ 𝑥 ∈ ( 𝐴 𝐵 ) )
12 11 eqriv ( 𝐴𝐵 ) = ( 𝐴 𝐵 )