Description: Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002)
Ref | Expression | ||
---|---|---|---|
Hypothesis | intunsn.1 | ⊢ 𝐵 ∈ V | |
Assertion | intunsn | ⊢ ∩ ( 𝐴 ∪ { 𝐵 } ) = ( ∩ 𝐴 ∩ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intunsn.1 | ⊢ 𝐵 ∈ V | |
2 | intun | ⊢ ∩ ( 𝐴 ∪ { 𝐵 } ) = ( ∩ 𝐴 ∩ ∩ { 𝐵 } ) | |
3 | 1 | intsn | ⊢ ∩ { 𝐵 } = 𝐵 |
4 | 3 | ineq2i | ⊢ ( ∩ 𝐴 ∩ ∩ { 𝐵 } ) = ( ∩ 𝐴 ∩ 𝐵 ) |
5 | 2 4 | eqtri | ⊢ ∩ ( 𝐴 ∪ { 𝐵 } ) = ( ∩ 𝐴 ∩ 𝐵 ) |