Metamath Proof Explorer


Theorem intunsn

Description: Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002)

Ref Expression
Hypothesis intunsn.1 𝐵 ∈ V
Assertion intunsn ( 𝐴 ∪ { 𝐵 } ) = ( 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 intunsn.1 𝐵 ∈ V
2 intun ( 𝐴 ∪ { 𝐵 } ) = ( 𝐴 { 𝐵 } )
3 1 intsn { 𝐵 } = 𝐵
4 3 ineq2i ( 𝐴 { 𝐵 } ) = ( 𝐴𝐵 )
5 2 4 eqtri ( 𝐴 ∪ { 𝐵 } ) = ( 𝐴𝐵 )