Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Replacement
Theorems requiring empty set existence
intv
Next ⟩
axpweq
Metamath Proof Explorer
Ascii
Structured
Theorem
intv
Description:
The intersection of the universal class is empty.
(Contributed by
NM
, 11-Sep-2008)
Ref
Expression
Assertion
intv
⊢
∩
V = ∅
Proof
Step
Hyp
Ref
Expression
1
0ex
⊢
∅ ∈ V
2
int0el
⊢
( ∅ ∈ V →
∩
V = ∅ )
3
1
2
ax-mp
⊢
∩
V = ∅