Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) → 𝐴 ⊆ WUni ) |
2 |
1
|
sselda |
⊢ ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑢 ∈ 𝐴 ) → 𝑢 ∈ WUni ) |
3 |
|
wuntr |
⊢ ( 𝑢 ∈ WUni → Tr 𝑢 ) |
4 |
2 3
|
syl |
⊢ ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑢 ∈ 𝐴 ) → Tr 𝑢 ) |
5 |
4
|
ralrimiva |
⊢ ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) → ∀ 𝑢 ∈ 𝐴 Tr 𝑢 ) |
6 |
|
trint |
⊢ ( ∀ 𝑢 ∈ 𝐴 Tr 𝑢 → Tr ∩ 𝐴 ) |
7 |
5 6
|
syl |
⊢ ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) → Tr ∩ 𝐴 ) |
8 |
2
|
wun0 |
⊢ ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑢 ∈ 𝐴 ) → ∅ ∈ 𝑢 ) |
9 |
8
|
ralrimiva |
⊢ ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) → ∀ 𝑢 ∈ 𝐴 ∅ ∈ 𝑢 ) |
10 |
|
0ex |
⊢ ∅ ∈ V |
11 |
10
|
elint2 |
⊢ ( ∅ ∈ ∩ 𝐴 ↔ ∀ 𝑢 ∈ 𝐴 ∅ ∈ 𝑢 ) |
12 |
9 11
|
sylibr |
⊢ ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) → ∅ ∈ ∩ 𝐴 ) |
13 |
12
|
ne0d |
⊢ ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ≠ ∅ ) |
14 |
2
|
adantlr |
⊢ ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) → 𝑢 ∈ WUni ) |
15 |
|
intss1 |
⊢ ( 𝑢 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑢 ) |
16 |
15
|
adantl |
⊢ ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑢 ∈ 𝐴 ) → ∩ 𝐴 ⊆ 𝑢 ) |
17 |
16
|
sselda |
⊢ ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ∩ 𝐴 ) → 𝑥 ∈ 𝑢 ) |
18 |
17
|
an32s |
⊢ ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) → 𝑥 ∈ 𝑢 ) |
19 |
14 18
|
wununi |
⊢ ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) → ∪ 𝑥 ∈ 𝑢 ) |
20 |
19
|
ralrimiva |
⊢ ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) → ∀ 𝑢 ∈ 𝐴 ∪ 𝑥 ∈ 𝑢 ) |
21 |
|
vuniex |
⊢ ∪ 𝑥 ∈ V |
22 |
21
|
elint2 |
⊢ ( ∪ 𝑥 ∈ ∩ 𝐴 ↔ ∀ 𝑢 ∈ 𝐴 ∪ 𝑥 ∈ 𝑢 ) |
23 |
20 22
|
sylibr |
⊢ ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) → ∪ 𝑥 ∈ ∩ 𝐴 ) |
24 |
14 18
|
wunpw |
⊢ ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) → 𝒫 𝑥 ∈ 𝑢 ) |
25 |
24
|
ralrimiva |
⊢ ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) → ∀ 𝑢 ∈ 𝐴 𝒫 𝑥 ∈ 𝑢 ) |
26 |
|
vpwex |
⊢ 𝒫 𝑥 ∈ V |
27 |
26
|
elint2 |
⊢ ( 𝒫 𝑥 ∈ ∩ 𝐴 ↔ ∀ 𝑢 ∈ 𝐴 𝒫 𝑥 ∈ 𝑢 ) |
28 |
25 27
|
sylibr |
⊢ ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) → 𝒫 𝑥 ∈ ∩ 𝐴 ) |
29 |
14
|
adantlr |
⊢ ( ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑦 ∈ ∩ 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) → 𝑢 ∈ WUni ) |
30 |
18
|
adantlr |
⊢ ( ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑦 ∈ ∩ 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) → 𝑥 ∈ 𝑢 ) |
31 |
15
|
adantl |
⊢ ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) → ∩ 𝐴 ⊆ 𝑢 ) |
32 |
31
|
sselda |
⊢ ( ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑦 ∈ 𝑢 ) |
33 |
32
|
an32s |
⊢ ( ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑦 ∈ ∩ 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) → 𝑦 ∈ 𝑢 ) |
34 |
29 30 33
|
wunpr |
⊢ ( ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑦 ∈ ∩ 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) → { 𝑥 , 𝑦 } ∈ 𝑢 ) |
35 |
34
|
ralrimiva |
⊢ ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑦 ∈ ∩ 𝐴 ) → ∀ 𝑢 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝑢 ) |
36 |
|
prex |
⊢ { 𝑥 , 𝑦 } ∈ V |
37 |
36
|
elint2 |
⊢ ( { 𝑥 , 𝑦 } ∈ ∩ 𝐴 ↔ ∀ 𝑢 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝑢 ) |
38 |
35 37
|
sylibr |
⊢ ( ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑦 ∈ ∩ 𝐴 ) → { 𝑥 , 𝑦 } ∈ ∩ 𝐴 ) |
39 |
38
|
ralrimiva |
⊢ ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) → ∀ 𝑦 ∈ ∩ 𝐴 { 𝑥 , 𝑦 } ∈ ∩ 𝐴 ) |
40 |
23 28 39
|
3jca |
⊢ ( ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝐴 ) → ( ∪ 𝑥 ∈ ∩ 𝐴 ∧ 𝒫 𝑥 ∈ ∩ 𝐴 ∧ ∀ 𝑦 ∈ ∩ 𝐴 { 𝑥 , 𝑦 } ∈ ∩ 𝐴 ) ) |
41 |
40
|
ralrimiva |
⊢ ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) → ∀ 𝑥 ∈ ∩ 𝐴 ( ∪ 𝑥 ∈ ∩ 𝐴 ∧ 𝒫 𝑥 ∈ ∩ 𝐴 ∧ ∀ 𝑦 ∈ ∩ 𝐴 { 𝑥 , 𝑦 } ∈ ∩ 𝐴 ) ) |
42 |
|
simpr |
⊢ ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) |
43 |
|
intex |
⊢ ( 𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V ) |
44 |
42 43
|
sylib |
⊢ ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ V ) |
45 |
|
iswun |
⊢ ( ∩ 𝐴 ∈ V → ( ∩ 𝐴 ∈ WUni ↔ ( Tr ∩ 𝐴 ∧ ∩ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ ∩ 𝐴 ( ∪ 𝑥 ∈ ∩ 𝐴 ∧ 𝒫 𝑥 ∈ ∩ 𝐴 ∧ ∀ 𝑦 ∈ ∩ 𝐴 { 𝑥 , 𝑦 } ∈ ∩ 𝐴 ) ) ) ) |
46 |
44 45
|
syl |
⊢ ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) → ( ∩ 𝐴 ∈ WUni ↔ ( Tr ∩ 𝐴 ∧ ∩ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ ∩ 𝐴 ( ∪ 𝑥 ∈ ∩ 𝐴 ∧ 𝒫 𝑥 ∈ ∩ 𝐴 ∧ ∀ 𝑦 ∈ ∩ 𝐴 { 𝑥 , 𝑦 } ∈ ∩ 𝐴 ) ) ) ) |
47 |
7 13 41 46
|
mpbir3and |
⊢ ( ( 𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ WUni ) |