Description: The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009) (Proof shortened by Andrew Salmon, 26-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | inundif | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
2 | eldif | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) | |
3 | 1 2 | orbi12i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∨ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∨ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) |
4 | pm4.42 | ⊢ ( 𝑥 ∈ 𝐴 ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∨ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) | |
5 | 3 4 | bitr4i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∨ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) ↔ 𝑥 ∈ 𝐴 ) |
6 | 5 | uneqri | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 |