Metamath Proof Explorer


Theorem inundif

Description: The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion inundif ( ( 𝐴𝐵 ) ∪ ( 𝐴𝐵 ) ) = 𝐴

Proof

Step Hyp Ref Expression
1 elin ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴𝑥𝐵 ) )
2 eldif ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) )
3 1 2 orbi12i ( ( 𝑥 ∈ ( 𝐴𝐵 ) ∨ 𝑥 ∈ ( 𝐴𝐵 ) ) ↔ ( ( 𝑥𝐴𝑥𝐵 ) ∨ ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) ) )
4 pm4.42 ( 𝑥𝐴 ↔ ( ( 𝑥𝐴𝑥𝐵 ) ∨ ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) ) )
5 3 4 bitr4i ( ( 𝑥 ∈ ( 𝐴𝐵 ) ∨ 𝑥 ∈ ( 𝐴𝐵 ) ) ↔ 𝑥𝐴 )
6 5 uneqri ( ( 𝐴𝐵 ) ∪ ( 𝐴𝐵 ) ) = 𝐴