| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ancom | ⊢ ( ( 𝑧  ∈  𝑥  ∧  ∃ 𝑦  ∈  𝐴 𝑥  =  ( 𝑦  ∩  𝐵 ) )  ↔  ( ∃ 𝑦  ∈  𝐴 𝑥  =  ( 𝑦  ∩  𝐵 )  ∧  𝑧  ∈  𝑥 ) ) | 
						
							| 2 |  | r19.41v | ⊢ ( ∃ 𝑦  ∈  𝐴 ( 𝑥  =  ( 𝑦  ∩  𝐵 )  ∧  𝑧  ∈  𝑥 )  ↔  ( ∃ 𝑦  ∈  𝐴 𝑥  =  ( 𝑦  ∩  𝐵 )  ∧  𝑧  ∈  𝑥 ) ) | 
						
							| 3 | 1 2 | bitr4i | ⊢ ( ( 𝑧  ∈  𝑥  ∧  ∃ 𝑦  ∈  𝐴 𝑥  =  ( 𝑦  ∩  𝐵 ) )  ↔  ∃ 𝑦  ∈  𝐴 ( 𝑥  =  ( 𝑦  ∩  𝐵 )  ∧  𝑧  ∈  𝑥 ) ) | 
						
							| 4 | 3 | exbii | ⊢ ( ∃ 𝑥 ( 𝑧  ∈  𝑥  ∧  ∃ 𝑦  ∈  𝐴 𝑥  =  ( 𝑦  ∩  𝐵 ) )  ↔  ∃ 𝑥 ∃ 𝑦  ∈  𝐴 ( 𝑥  =  ( 𝑦  ∩  𝐵 )  ∧  𝑧  ∈  𝑥 ) ) | 
						
							| 5 |  | eluniab | ⊢ ( 𝑧  ∈  ∪  { 𝑥  ∣  ∃ 𝑦  ∈  𝐴 𝑥  =  ( 𝑦  ∩  𝐵 ) }  ↔  ∃ 𝑥 ( 𝑧  ∈  𝑥  ∧  ∃ 𝑦  ∈  𝐴 𝑥  =  ( 𝑦  ∩  𝐵 ) ) ) | 
						
							| 6 |  | eluni2 | ⊢ ( 𝑧  ∈  ∪  𝐴  ↔  ∃ 𝑦  ∈  𝐴 𝑧  ∈  𝑦 ) | 
						
							| 7 | 6 | anbi1i | ⊢ ( ( 𝑧  ∈  ∪  𝐴  ∧  𝑧  ∈  𝐵 )  ↔  ( ∃ 𝑦  ∈  𝐴 𝑧  ∈  𝑦  ∧  𝑧  ∈  𝐵 ) ) | 
						
							| 8 |  | elin | ⊢ ( 𝑧  ∈  ( ∪  𝐴  ∩  𝐵 )  ↔  ( 𝑧  ∈  ∪  𝐴  ∧  𝑧  ∈  𝐵 ) ) | 
						
							| 9 |  | r19.41v | ⊢ ( ∃ 𝑦  ∈  𝐴 ( 𝑧  ∈  𝑦  ∧  𝑧  ∈  𝐵 )  ↔  ( ∃ 𝑦  ∈  𝐴 𝑧  ∈  𝑦  ∧  𝑧  ∈  𝐵 ) ) | 
						
							| 10 | 7 8 9 | 3bitr4i | ⊢ ( 𝑧  ∈  ( ∪  𝐴  ∩  𝐵 )  ↔  ∃ 𝑦  ∈  𝐴 ( 𝑧  ∈  𝑦  ∧  𝑧  ∈  𝐵 ) ) | 
						
							| 11 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 12 | 11 | inex1 | ⊢ ( 𝑦  ∩  𝐵 )  ∈  V | 
						
							| 13 |  | eleq2 | ⊢ ( 𝑥  =  ( 𝑦  ∩  𝐵 )  →  ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  ( 𝑦  ∩  𝐵 ) ) ) | 
						
							| 14 | 12 13 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥  =  ( 𝑦  ∩  𝐵 )  ∧  𝑧  ∈  𝑥 )  ↔  𝑧  ∈  ( 𝑦  ∩  𝐵 ) ) | 
						
							| 15 |  | elin | ⊢ ( 𝑧  ∈  ( 𝑦  ∩  𝐵 )  ↔  ( 𝑧  ∈  𝑦  ∧  𝑧  ∈  𝐵 ) ) | 
						
							| 16 | 14 15 | bitri | ⊢ ( ∃ 𝑥 ( 𝑥  =  ( 𝑦  ∩  𝐵 )  ∧  𝑧  ∈  𝑥 )  ↔  ( 𝑧  ∈  𝑦  ∧  𝑧  ∈  𝐵 ) ) | 
						
							| 17 | 16 | rexbii | ⊢ ( ∃ 𝑦  ∈  𝐴 ∃ 𝑥 ( 𝑥  =  ( 𝑦  ∩  𝐵 )  ∧  𝑧  ∈  𝑥 )  ↔  ∃ 𝑦  ∈  𝐴 ( 𝑧  ∈  𝑦  ∧  𝑧  ∈  𝐵 ) ) | 
						
							| 18 |  | rexcom4 | ⊢ ( ∃ 𝑦  ∈  𝐴 ∃ 𝑥 ( 𝑥  =  ( 𝑦  ∩  𝐵 )  ∧  𝑧  ∈  𝑥 )  ↔  ∃ 𝑥 ∃ 𝑦  ∈  𝐴 ( 𝑥  =  ( 𝑦  ∩  𝐵 )  ∧  𝑧  ∈  𝑥 ) ) | 
						
							| 19 | 10 17 18 | 3bitr2i | ⊢ ( 𝑧  ∈  ( ∪  𝐴  ∩  𝐵 )  ↔  ∃ 𝑥 ∃ 𝑦  ∈  𝐴 ( 𝑥  =  ( 𝑦  ∩  𝐵 )  ∧  𝑧  ∈  𝑥 ) ) | 
						
							| 20 | 4 5 19 | 3bitr4ri | ⊢ ( 𝑧  ∈  ( ∪  𝐴  ∩  𝐵 )  ↔  𝑧  ∈  ∪  { 𝑥  ∣  ∃ 𝑦  ∈  𝐴 𝑥  =  ( 𝑦  ∩  𝐵 ) } ) | 
						
							| 21 | 20 | eqriv | ⊢ ( ∪  𝐴  ∩  𝐵 )  =  ∪  { 𝑥  ∣  ∃ 𝑦  ∈  𝐴 𝑥  =  ( 𝑦  ∩  𝐵 ) } |