Step |
Hyp |
Ref |
Expression |
1 |
|
invfval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
invfval.n |
⊢ 𝑁 = ( Inv ‘ 𝐶 ) |
3 |
|
invfval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
invfval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
invfval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
isoval.n |
⊢ 𝐼 = ( Iso ‘ 𝐶 ) |
7 |
|
invinv.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) |
8 |
|
invco.o |
⊢ · = ( comp ‘ 𝐶 ) |
9 |
|
invco.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
10 |
|
invco.f |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐼 𝑍 ) ) |
11 |
|
eqid |
⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) |
12 |
1 2 3 4 5 6
|
isoval |
⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = dom ( 𝑋 𝑁 𝑌 ) ) |
13 |
7 12
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ dom ( 𝑋 𝑁 𝑌 ) ) |
14 |
1 2 3 4 5
|
invfun |
⊢ ( 𝜑 → Fun ( 𝑋 𝑁 𝑌 ) ) |
15 |
|
funfvbrb |
⊢ ( Fun ( 𝑋 𝑁 𝑌 ) → ( 𝐹 ∈ dom ( 𝑋 𝑁 𝑌 ) ↔ 𝐹 ( 𝑋 𝑁 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ( 𝑋 𝑁 𝑌 ) ↔ 𝐹 ( 𝑋 𝑁 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) ) |
17 |
13 16
|
mpbid |
⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑁 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) |
18 |
1 2 3 4 5 11
|
isinv |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ↔ ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ∧ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) ) |
19 |
17 18
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ∧ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) |
20 |
19
|
simpld |
⊢ ( 𝜑 → 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) |
21 |
1 2 3 5 9 6
|
isoval |
⊢ ( 𝜑 → ( 𝑌 𝐼 𝑍 ) = dom ( 𝑌 𝑁 𝑍 ) ) |
22 |
10 21
|
eleqtrd |
⊢ ( 𝜑 → 𝐺 ∈ dom ( 𝑌 𝑁 𝑍 ) ) |
23 |
1 2 3 5 9
|
invfun |
⊢ ( 𝜑 → Fun ( 𝑌 𝑁 𝑍 ) ) |
24 |
|
funfvbrb |
⊢ ( Fun ( 𝑌 𝑁 𝑍 ) → ( 𝐺 ∈ dom ( 𝑌 𝑁 𝑍 ) ↔ 𝐺 ( 𝑌 𝑁 𝑍 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ) ) |
25 |
23 24
|
syl |
⊢ ( 𝜑 → ( 𝐺 ∈ dom ( 𝑌 𝑁 𝑍 ) ↔ 𝐺 ( 𝑌 𝑁 𝑍 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ) ) |
26 |
22 25
|
mpbid |
⊢ ( 𝜑 → 𝐺 ( 𝑌 𝑁 𝑍 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ) |
27 |
1 2 3 5 9 11
|
isinv |
⊢ ( 𝜑 → ( 𝐺 ( 𝑌 𝑁 𝑍 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ↔ ( 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑍 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ∧ ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ( 𝑍 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ) ) ) |
28 |
26 27
|
mpbid |
⊢ ( 𝜑 → ( 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑍 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ∧ ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ( 𝑍 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ) ) |
29 |
28
|
simpld |
⊢ ( 𝜑 → 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑍 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ) |
30 |
1 8 11 3 4 5 9 20 29
|
sectco |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ( 𝑋 ( Sect ‘ 𝐶 ) 𝑍 ) ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ) ) |
31 |
28
|
simprd |
⊢ ( 𝜑 → ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ( 𝑍 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ) |
32 |
19
|
simprd |
⊢ ( 𝜑 → ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) |
33 |
1 8 11 3 9 5 4 31 32
|
sectco |
⊢ ( 𝜑 → ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ) ( 𝑍 ( Sect ‘ 𝐶 ) 𝑋 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |
34 |
1 2 3 4 9 11
|
isinv |
⊢ ( 𝜑 → ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ( 𝑋 𝑁 𝑍 ) ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ) ↔ ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ( 𝑋 ( Sect ‘ 𝐶 ) 𝑍 ) ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ) ∧ ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ) ( 𝑍 ( Sect ‘ 𝐶 ) 𝑋 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) ) |
35 |
30 33 34
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ( 𝑋 𝑁 𝑍 ) ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ) ) |