Metamath Proof Explorer


Theorem invdif

Description: Intersection with universal complement. Remark in Stoll p. 20. (Contributed by NM, 17-Aug-2004)

Ref Expression
Assertion invdif ( 𝐴 ∩ ( V ∖ 𝐵 ) ) = ( 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 dfin2 ( 𝐴 ∩ ( V ∖ 𝐵 ) ) = ( 𝐴 ∖ ( V ∖ ( V ∖ 𝐵 ) ) )
2 ddif ( V ∖ ( V ∖ 𝐵 ) ) = 𝐵
3 2 difeq2i ( 𝐴 ∖ ( V ∖ ( V ∖ 𝐵 ) ) ) = ( 𝐴𝐵 )
4 1 3 eqtri ( 𝐴 ∩ ( V ∖ 𝐵 ) ) = ( 𝐴𝐵 )