Step |
Hyp |
Ref |
Expression |
1 |
|
nfra2w |
⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 = 𝑥 |
2 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 = 𝑥 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 𝐶 = 𝑥 ) ) |
3 |
|
rsp |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 = 𝑥 → ( 𝑦 ∈ 𝐵 → 𝐶 = 𝑥 ) ) |
4 |
|
eqcom |
⊢ ( 𝐶 = 𝑥 ↔ 𝑥 = 𝐶 ) |
5 |
3 4
|
syl6ib |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 = 𝑥 → ( 𝑦 ∈ 𝐵 → 𝑥 = 𝐶 ) ) |
6 |
5
|
imim2i |
⊢ ( ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 𝐶 = 𝑥 ) → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝑥 = 𝐶 ) ) ) |
7 |
6
|
impd |
⊢ ( ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 𝐶 = 𝑥 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 = 𝐶 ) ) |
8 |
7
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 𝐶 = 𝑥 ) → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 = 𝐶 ) ) |
9 |
2 8
|
sylbi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 = 𝑥 → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 = 𝐶 ) ) |
10 |
|
mo2icl |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 = 𝐶 ) → ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
11 |
9 10
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 = 𝑥 → ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
12 |
1 11
|
alrimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 = 𝑥 → ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
13 |
|
dfdisj2 |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
14 |
12 13
|
sylibr |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 = 𝑥 → Disj 𝑥 ∈ 𝐴 𝐵 ) |