Metamath Proof Explorer


Theorem invdisjrab

Description: The restricted class abstractions { x e. B | C = y } for distinct y e. A are disjoint. (Contributed by AV, 6-May-2020)

Ref Expression
Assertion invdisjrab Disj 𝑦𝐴 { 𝑥𝐵𝐶 = 𝑦 }

Proof

Step Hyp Ref Expression
1 nfcv 𝑥 𝑧
2 nfcv 𝑥 𝐵
3 nfcsb1v 𝑥 𝑧 / 𝑥 𝐶
4 3 nfeq1 𝑥 𝑧 / 𝑥 𝐶 = 𝑦
5 csbeq1a ( 𝑥 = 𝑧𝐶 = 𝑧 / 𝑥 𝐶 )
6 5 eqeq1d ( 𝑥 = 𝑧 → ( 𝐶 = 𝑦 𝑧 / 𝑥 𝐶 = 𝑦 ) )
7 1 2 4 6 elrabf ( 𝑧 ∈ { 𝑥𝐵𝐶 = 𝑦 } ↔ ( 𝑧𝐵 𝑧 / 𝑥 𝐶 = 𝑦 ) )
8 ax-1 ( 𝑧 / 𝑥 𝐶 = 𝑦 → ( 𝑦𝐴 𝑧 / 𝑥 𝐶 = 𝑦 ) )
9 7 8 simplbiim ( 𝑧 ∈ { 𝑥𝐵𝐶 = 𝑦 } → ( 𝑦𝐴 𝑧 / 𝑥 𝐶 = 𝑦 ) )
10 9 impcom ( ( 𝑦𝐴𝑧 ∈ { 𝑥𝐵𝐶 = 𝑦 } ) → 𝑧 / 𝑥 𝐶 = 𝑦 )
11 10 rgen2 𝑦𝐴𝑧 ∈ { 𝑥𝐵𝐶 = 𝑦 } 𝑧 / 𝑥 𝐶 = 𝑦
12 invdisj ( ∀ 𝑦𝐴𝑧 ∈ { 𝑥𝐵𝐶 = 𝑦 } 𝑧 / 𝑥 𝐶 = 𝑦Disj 𝑦𝐴 { 𝑥𝐵𝐶 = 𝑦 } )
13 11 12 ax-mp Disj 𝑦𝐴 { 𝑥𝐵𝐶 = 𝑦 }