| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfcv | ⊢ Ⅎ 𝑥 𝑧 | 
						
							| 2 |  | nfcv | ⊢ Ⅎ 𝑥 𝐵 | 
						
							| 3 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑧  /  𝑥 ⦌ 𝐶 | 
						
							| 4 | 3 | nfeq1 | ⊢ Ⅎ 𝑥 ⦋ 𝑧  /  𝑥 ⦌ 𝐶  =  𝑦 | 
						
							| 5 |  | csbeq1a | ⊢ ( 𝑥  =  𝑧  →  𝐶  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 ) | 
						
							| 6 | 5 | eqeq1d | ⊢ ( 𝑥  =  𝑧  →  ( 𝐶  =  𝑦  ↔  ⦋ 𝑧  /  𝑥 ⦌ 𝐶  =  𝑦 ) ) | 
						
							| 7 | 1 2 4 6 | elrabf | ⊢ ( 𝑧  ∈  { 𝑥  ∈  𝐵  ∣  𝐶  =  𝑦 }  ↔  ( 𝑧  ∈  𝐵  ∧  ⦋ 𝑧  /  𝑥 ⦌ 𝐶  =  𝑦 ) ) | 
						
							| 8 |  | simprr | ⊢ ( ( 𝑦  ∈  𝐴  ∧  ( 𝑧  ∈  𝐵  ∧  ⦋ 𝑧  /  𝑥 ⦌ 𝐶  =  𝑦 ) )  →  ⦋ 𝑧  /  𝑥 ⦌ 𝐶  =  𝑦 ) | 
						
							| 9 | 7 8 | sylan2b | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  { 𝑥  ∈  𝐵  ∣  𝐶  =  𝑦 } )  →  ⦋ 𝑧  /  𝑥 ⦌ 𝐶  =  𝑦 ) | 
						
							| 10 | 9 | rgen2 | ⊢ ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  { 𝑥  ∈  𝐵  ∣  𝐶  =  𝑦 } ⦋ 𝑧  /  𝑥 ⦌ 𝐶  =  𝑦 | 
						
							| 11 |  | invdisj | ⊢ ( ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  { 𝑥  ∈  𝐵  ∣  𝐶  =  𝑦 } ⦋ 𝑧  /  𝑥 ⦌ 𝐶  =  𝑦  →  Disj  𝑦  ∈  𝐴 { 𝑥  ∈  𝐵  ∣  𝐶  =  𝑦 } ) | 
						
							| 12 | 10 11 | ax-mp | ⊢ Disj  𝑦  ∈  𝐴 { 𝑥  ∈  𝐵  ∣  𝐶  =  𝑦 } |