Metamath Proof Explorer


Theorem invdisjrabw

Description: Version of invdisjrab with a disjoint variable condition, which does not require ax-13 . (Contributed by Gino Giotto, 26-Jan-2024)

Ref Expression
Assertion invdisjrabw Disj 𝑦𝐴 { 𝑥𝐵𝐶 = 𝑦 }

Proof

Step Hyp Ref Expression
1 nfcv 𝑥 𝑧
2 nfcv 𝑥 𝐵
3 nfcsb1v 𝑥 𝑧 / 𝑥 𝐶
4 3 nfeq1 𝑥 𝑧 / 𝑥 𝐶 = 𝑦
5 csbeq1a ( 𝑥 = 𝑧𝐶 = 𝑧 / 𝑥 𝐶 )
6 5 eqeq1d ( 𝑥 = 𝑧 → ( 𝐶 = 𝑦 𝑧 / 𝑥 𝐶 = 𝑦 ) )
7 1 2 4 6 elrabf ( 𝑧 ∈ { 𝑥𝐵𝐶 = 𝑦 } ↔ ( 𝑧𝐵 𝑧 / 𝑥 𝐶 = 𝑦 ) )
8 simprr ( ( 𝑦𝐴 ∧ ( 𝑧𝐵 𝑧 / 𝑥 𝐶 = 𝑦 ) ) → 𝑧 / 𝑥 𝐶 = 𝑦 )
9 7 8 sylan2b ( ( 𝑦𝐴𝑧 ∈ { 𝑥𝐵𝐶 = 𝑦 } ) → 𝑧 / 𝑥 𝐶 = 𝑦 )
10 9 rgen2 𝑦𝐴𝑧 ∈ { 𝑥𝐵𝐶 = 𝑦 } 𝑧 / 𝑥 𝐶 = 𝑦
11 invdisj ( ∀ 𝑦𝐴𝑧 ∈ { 𝑥𝐵𝐶 = 𝑦 } 𝑧 / 𝑥 𝐶 = 𝑦Disj 𝑦𝐴 { 𝑥𝐵𝐶 = 𝑦 } )
12 10 11 ax-mp Disj 𝑦𝐴 { 𝑥𝐵𝐶 = 𝑦 }