Step |
Hyp |
Ref |
Expression |
1 |
|
inveq.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
inveq.n |
⊢ 𝑁 = ( Inv ‘ 𝐶 ) |
3 |
|
inveq.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
inveq.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
inveq.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
eqid |
⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) |
7 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ∧ 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) ) → 𝐶 ∈ Cat ) |
8 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ∧ 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) ) → 𝑌 ∈ 𝐵 ) |
9 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ∧ 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) ) → 𝑋 ∈ 𝐵 ) |
10 |
1 2 3 4 5 6
|
isinv |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) ) |
11 |
|
simpr |
⊢ ( ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) → 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) |
12 |
10 11
|
syl6bi |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 → 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) |
13 |
12
|
com12 |
⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 → ( 𝜑 → 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ∧ 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) → ( 𝜑 → 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) |
15 |
14
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ∧ 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) ) → 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) |
16 |
1 2 3 4 5 6
|
isinv |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ↔ ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐾 ∧ 𝐾 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) ) |
17 |
|
simpl |
⊢ ( ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐾 ∧ 𝐾 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) → 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐾 ) |
18 |
16 17
|
syl6bi |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 → 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐾 ) ) |
19 |
18
|
adantld |
⊢ ( 𝜑 → ( ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ∧ 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) → 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐾 ) ) |
20 |
19
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ∧ 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) ) → 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐾 ) |
21 |
1 6 7 8 9 15 20
|
sectcan |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ∧ 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) ) → 𝐺 = 𝐾 ) |
22 |
21
|
ex |
⊢ ( 𝜑 → ( ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ∧ 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) → 𝐺 = 𝐾 ) ) |