Metamath Proof Explorer


Theorem inveq

Description: If there are two inverses of a morphism, these inverses are equal. Corollary 3.11 of Adamek p. 28. (Contributed by AV, 10-Apr-2020) (Revised by AV, 3-Jul-2022)

Ref Expression
Hypotheses inveq.b 𝐵 = ( Base ‘ 𝐶 )
inveq.n 𝑁 = ( Inv ‘ 𝐶 )
inveq.c ( 𝜑𝐶 ∈ Cat )
inveq.x ( 𝜑𝑋𝐵 )
inveq.y ( 𝜑𝑌𝐵 )
Assertion inveq ( 𝜑 → ( ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) → 𝐺 = 𝐾 ) )

Proof

Step Hyp Ref Expression
1 inveq.b 𝐵 = ( Base ‘ 𝐶 )
2 inveq.n 𝑁 = ( Inv ‘ 𝐶 )
3 inveq.c ( 𝜑𝐶 ∈ Cat )
4 inveq.x ( 𝜑𝑋𝐵 )
5 inveq.y ( 𝜑𝑌𝐵 )
6 eqid ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 )
7 3 adantr ( ( 𝜑 ∧ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) ) → 𝐶 ∈ Cat )
8 5 adantr ( ( 𝜑 ∧ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) ) → 𝑌𝐵 )
9 4 adantr ( ( 𝜑 ∧ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) ) → 𝑋𝐵 )
10 1 2 3 4 5 6 isinv ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) )
11 simpr ( ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) → 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 )
12 10 11 syl6bi ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) )
13 12 com12 ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 → ( 𝜑𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) )
14 13 adantr ( ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) → ( 𝜑𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) )
15 14 impcom ( ( 𝜑 ∧ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) ) → 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 )
16 1 2 3 4 5 6 isinv ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ↔ ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐾𝐾 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) )
17 simpl ( ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐾𝐾 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) → 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐾 )
18 16 17 syl6bi ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐾 ) )
19 18 adantld ( 𝜑 → ( ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) → 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐾 ) )
20 19 imp ( ( 𝜑 ∧ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) ) → 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐾 )
21 1 6 7 8 9 15 20 sectcan ( ( 𝜑 ∧ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) ) → 𝐺 = 𝐾 )
22 21 ex ( 𝜑 → ( ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) → 𝐺 = 𝐾 ) )