Step |
Hyp |
Ref |
Expression |
1 |
|
invfval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
invfval.n |
⊢ 𝑁 = ( Inv ‘ 𝐶 ) |
3 |
|
invfval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
invfval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
invfval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
isoval.n |
⊢ 𝐼 = ( Iso ‘ 𝐶 ) |
7 |
1 2 3 4 5 6
|
invf |
⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) : ( 𝑋 𝐼 𝑌 ) ⟶ ( 𝑌 𝐼 𝑋 ) ) |
8 |
7
|
ffnd |
⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) Fn ( 𝑋 𝐼 𝑌 ) ) |
9 |
1 2 3 5 4 6
|
invf |
⊢ ( 𝜑 → ( 𝑌 𝑁 𝑋 ) : ( 𝑌 𝐼 𝑋 ) ⟶ ( 𝑋 𝐼 𝑌 ) ) |
10 |
9
|
ffnd |
⊢ ( 𝜑 → ( 𝑌 𝑁 𝑋 ) Fn ( 𝑌 𝐼 𝑋 ) ) |
11 |
1 2 3 4 5
|
invsym2 |
⊢ ( 𝜑 → ◡ ( 𝑋 𝑁 𝑌 ) = ( 𝑌 𝑁 𝑋 ) ) |
12 |
11
|
fneq1d |
⊢ ( 𝜑 → ( ◡ ( 𝑋 𝑁 𝑌 ) Fn ( 𝑌 𝐼 𝑋 ) ↔ ( 𝑌 𝑁 𝑋 ) Fn ( 𝑌 𝐼 𝑋 ) ) ) |
13 |
10 12
|
mpbird |
⊢ ( 𝜑 → ◡ ( 𝑋 𝑁 𝑌 ) Fn ( 𝑌 𝐼 𝑋 ) ) |
14 |
|
dff1o4 |
⊢ ( ( 𝑋 𝑁 𝑌 ) : ( 𝑋 𝐼 𝑌 ) –1-1-onto→ ( 𝑌 𝐼 𝑋 ) ↔ ( ( 𝑋 𝑁 𝑌 ) Fn ( 𝑋 𝐼 𝑌 ) ∧ ◡ ( 𝑋 𝑁 𝑌 ) Fn ( 𝑌 𝐼 𝑋 ) ) ) |
15 |
8 13 14
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) : ( 𝑋 𝐼 𝑌 ) –1-1-onto→ ( 𝑌 𝐼 𝑋 ) ) |