Metamath Proof Explorer


Theorem invf1o

Description: The inverse relation is a bijection from isomorphisms to isomorphisms. This means that every isomorphism F e. ( X I Y ) has a unique inverse, denoted by ( ( InvC )F ) . Remark 3.12 of Adamek p. 28. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses invfval.b 𝐵 = ( Base ‘ 𝐶 )
invfval.n 𝑁 = ( Inv ‘ 𝐶 )
invfval.c ( 𝜑𝐶 ∈ Cat )
invfval.x ( 𝜑𝑋𝐵 )
invfval.y ( 𝜑𝑌𝐵 )
isoval.n 𝐼 = ( Iso ‘ 𝐶 )
Assertion invf1o ( 𝜑 → ( 𝑋 𝑁 𝑌 ) : ( 𝑋 𝐼 𝑌 ) –1-1-onto→ ( 𝑌 𝐼 𝑋 ) )

Proof

Step Hyp Ref Expression
1 invfval.b 𝐵 = ( Base ‘ 𝐶 )
2 invfval.n 𝑁 = ( Inv ‘ 𝐶 )
3 invfval.c ( 𝜑𝐶 ∈ Cat )
4 invfval.x ( 𝜑𝑋𝐵 )
5 invfval.y ( 𝜑𝑌𝐵 )
6 isoval.n 𝐼 = ( Iso ‘ 𝐶 )
7 1 2 3 4 5 6 invf ( 𝜑 → ( 𝑋 𝑁 𝑌 ) : ( 𝑋 𝐼 𝑌 ) ⟶ ( 𝑌 𝐼 𝑋 ) )
8 7 ffnd ( 𝜑 → ( 𝑋 𝑁 𝑌 ) Fn ( 𝑋 𝐼 𝑌 ) )
9 1 2 3 5 4 6 invf ( 𝜑 → ( 𝑌 𝑁 𝑋 ) : ( 𝑌 𝐼 𝑋 ) ⟶ ( 𝑋 𝐼 𝑌 ) )
10 9 ffnd ( 𝜑 → ( 𝑌 𝑁 𝑋 ) Fn ( 𝑌 𝐼 𝑋 ) )
11 1 2 3 4 5 invsym2 ( 𝜑 ( 𝑋 𝑁 𝑌 ) = ( 𝑌 𝑁 𝑋 ) )
12 11 fneq1d ( 𝜑 → ( ( 𝑋 𝑁 𝑌 ) Fn ( 𝑌 𝐼 𝑋 ) ↔ ( 𝑌 𝑁 𝑋 ) Fn ( 𝑌 𝐼 𝑋 ) ) )
13 10 12 mpbird ( 𝜑 ( 𝑋 𝑁 𝑌 ) Fn ( 𝑌 𝐼 𝑋 ) )
14 dff1o4 ( ( 𝑋 𝑁 𝑌 ) : ( 𝑋 𝐼 𝑌 ) –1-1-onto→ ( 𝑌 𝐼 𝑋 ) ↔ ( ( 𝑋 𝑁 𝑌 ) Fn ( 𝑋 𝐼 𝑌 ) ∧ ( 𝑋 𝑁 𝑌 ) Fn ( 𝑌 𝐼 𝑋 ) ) )
15 8 13 14 sylanbrc ( 𝜑 → ( 𝑋 𝑁 𝑌 ) : ( 𝑋 𝐼 𝑌 ) –1-1-onto→ ( 𝑌 𝐼 𝑋 ) )