Step |
Hyp |
Ref |
Expression |
1 |
|
invfval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
invfval.n |
⊢ 𝑁 = ( Inv ‘ 𝐶 ) |
3 |
|
invfval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
invfval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
invfval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
invfval.s |
⊢ 𝑆 = ( Sect ‘ 𝐶 ) |
7 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) ) |
8 |
7 1
|
eqtr4di |
⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = 𝐵 ) |
9 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( Sect ‘ 𝑐 ) = ( Sect ‘ 𝐶 ) ) |
10 |
9 6
|
eqtr4di |
⊢ ( 𝑐 = 𝐶 → ( Sect ‘ 𝑐 ) = 𝑆 ) |
11 |
10
|
oveqd |
⊢ ( 𝑐 = 𝐶 → ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) = ( 𝑥 𝑆 𝑦 ) ) |
12 |
10
|
oveqd |
⊢ ( 𝑐 = 𝐶 → ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) = ( 𝑦 𝑆 𝑥 ) ) |
13 |
12
|
cnveqd |
⊢ ( 𝑐 = 𝐶 → ◡ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) = ◡ ( 𝑦 𝑆 𝑥 ) ) |
14 |
11 13
|
ineq12d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) ) = ( ( 𝑥 𝑆 𝑦 ) ∩ ◡ ( 𝑦 𝑆 𝑥 ) ) ) |
15 |
8 8 14
|
mpoeq123dv |
⊢ ( 𝑐 = 𝐶 → ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝑆 𝑦 ) ∩ ◡ ( 𝑦 𝑆 𝑥 ) ) ) ) |
16 |
|
df-inv |
⊢ Inv = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) ) ) ) |
17 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
18 |
17 17
|
mpoex |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝑆 𝑦 ) ∩ ◡ ( 𝑦 𝑆 𝑥 ) ) ) ∈ V |
19 |
15 16 18
|
fvmpt |
⊢ ( 𝐶 ∈ Cat → ( Inv ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝑆 𝑦 ) ∩ ◡ ( 𝑦 𝑆 𝑥 ) ) ) ) |
20 |
3 19
|
syl |
⊢ ( 𝜑 → ( Inv ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝑆 𝑦 ) ∩ ◡ ( 𝑦 𝑆 𝑥 ) ) ) ) |
21 |
2 20
|
eqtrid |
⊢ ( 𝜑 → 𝑁 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝑆 𝑦 ) ∩ ◡ ( 𝑦 𝑆 𝑥 ) ) ) ) |