Metamath Proof Explorer


Theorem invffval

Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses invfval.b 𝐵 = ( Base ‘ 𝐶 )
invfval.n 𝑁 = ( Inv ‘ 𝐶 )
invfval.c ( 𝜑𝐶 ∈ Cat )
invfval.x ( 𝜑𝑋𝐵 )
invfval.y ( 𝜑𝑌𝐵 )
invfval.s 𝑆 = ( Sect ‘ 𝐶 )
Assertion invffval ( 𝜑𝑁 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 𝑆 𝑦 ) ∩ ( 𝑦 𝑆 𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 invfval.b 𝐵 = ( Base ‘ 𝐶 )
2 invfval.n 𝑁 = ( Inv ‘ 𝐶 )
3 invfval.c ( 𝜑𝐶 ∈ Cat )
4 invfval.x ( 𝜑𝑋𝐵 )
5 invfval.y ( 𝜑𝑌𝐵 )
6 invfval.s 𝑆 = ( Sect ‘ 𝐶 )
7 fveq2 ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) )
8 7 1 eqtr4di ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = 𝐵 )
9 fveq2 ( 𝑐 = 𝐶 → ( Sect ‘ 𝑐 ) = ( Sect ‘ 𝐶 ) )
10 9 6 eqtr4di ( 𝑐 = 𝐶 → ( Sect ‘ 𝑐 ) = 𝑆 )
11 10 oveqd ( 𝑐 = 𝐶 → ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) = ( 𝑥 𝑆 𝑦 ) )
12 10 oveqd ( 𝑐 = 𝐶 → ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) = ( 𝑦 𝑆 𝑥 ) )
13 12 cnveqd ( 𝑐 = 𝐶 ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) = ( 𝑦 𝑆 𝑥 ) )
14 11 13 ineq12d ( 𝑐 = 𝐶 → ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) ∩ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) ) = ( ( 𝑥 𝑆 𝑦 ) ∩ ( 𝑦 𝑆 𝑥 ) ) )
15 8 8 14 mpoeq123dv ( 𝑐 = 𝐶 → ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) ∩ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) ) ) = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 𝑆 𝑦 ) ∩ ( 𝑦 𝑆 𝑥 ) ) ) )
16 df-inv Inv = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) ∩ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) ) ) )
17 1 fvexi 𝐵 ∈ V
18 17 17 mpoex ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 𝑆 𝑦 ) ∩ ( 𝑦 𝑆 𝑥 ) ) ) ∈ V
19 15 16 18 fvmpt ( 𝐶 ∈ Cat → ( Inv ‘ 𝐶 ) = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 𝑆 𝑦 ) ∩ ( 𝑦 𝑆 𝑥 ) ) ) )
20 3 19 syl ( 𝜑 → ( Inv ‘ 𝐶 ) = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 𝑆 𝑦 ) ∩ ( 𝑦 𝑆 𝑥 ) ) ) )
21 2 20 syl5eq ( 𝜑𝑁 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 𝑆 𝑦 ) ∩ ( 𝑦 𝑆 𝑥 ) ) ) )