Step |
Hyp |
Ref |
Expression |
1 |
|
invfval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
invfval.n |
⊢ 𝑁 = ( Inv ‘ 𝐶 ) |
3 |
|
invfval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
invfval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
invfval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
7 |
1 2 3 4 5 6
|
invss |
⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) ⊆ ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) × ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) |
8 |
|
relxp |
⊢ Rel ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) × ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
9 |
|
relss |
⊢ ( ( 𝑋 𝑁 𝑌 ) ⊆ ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) × ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) → ( Rel ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) × ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) → Rel ( 𝑋 𝑁 𝑌 ) ) ) |
10 |
7 8 9
|
mpisyl |
⊢ ( 𝜑 → Rel ( 𝑋 𝑁 𝑌 ) ) |
11 |
|
eqid |
⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) |
12 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 ∧ 𝑓 ( 𝑋 𝑁 𝑌 ) ℎ ) ) → 𝐶 ∈ Cat ) |
13 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 ∧ 𝑓 ( 𝑋 𝑁 𝑌 ) ℎ ) ) → 𝑌 ∈ 𝐵 ) |
14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 ∧ 𝑓 ( 𝑋 𝑁 𝑌 ) ℎ ) ) → 𝑋 ∈ 𝐵 ) |
15 |
1 2 3 4 5 11
|
isinv |
⊢ ( 𝜑 → ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 ↔ ( 𝑓 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝑔 ∧ 𝑔 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝑓 ) ) ) |
16 |
15
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 ) → 𝑔 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝑓 ) |
17 |
16
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 ∧ 𝑓 ( 𝑋 𝑁 𝑌 ) ℎ ) ) → 𝑔 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝑓 ) |
18 |
1 2 3 4 5 11
|
isinv |
⊢ ( 𝜑 → ( 𝑓 ( 𝑋 𝑁 𝑌 ) ℎ ↔ ( 𝑓 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ℎ ∧ ℎ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝑓 ) ) ) |
19 |
18
|
simprbda |
⊢ ( ( 𝜑 ∧ 𝑓 ( 𝑋 𝑁 𝑌 ) ℎ ) → 𝑓 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ℎ ) |
20 |
19
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 ∧ 𝑓 ( 𝑋 𝑁 𝑌 ) ℎ ) ) → 𝑓 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ℎ ) |
21 |
1 11 12 13 14 17 20
|
sectcan |
⊢ ( ( 𝜑 ∧ ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 ∧ 𝑓 ( 𝑋 𝑁 𝑌 ) ℎ ) ) → 𝑔 = ℎ ) |
22 |
21
|
ex |
⊢ ( 𝜑 → ( ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 ∧ 𝑓 ( 𝑋 𝑁 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) |
23 |
22
|
alrimiv |
⊢ ( 𝜑 → ∀ ℎ ( ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 ∧ 𝑓 ( 𝑋 𝑁 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) |
24 |
23
|
alrimivv |
⊢ ( 𝜑 → ∀ 𝑓 ∀ 𝑔 ∀ ℎ ( ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 ∧ 𝑓 ( 𝑋 𝑁 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) |
25 |
|
dffun2 |
⊢ ( Fun ( 𝑋 𝑁 𝑌 ) ↔ ( Rel ( 𝑋 𝑁 𝑌 ) ∧ ∀ 𝑓 ∀ 𝑔 ∀ ℎ ( ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 ∧ 𝑓 ( 𝑋 𝑁 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) ) |
26 |
10 24 25
|
sylanbrc |
⊢ ( 𝜑 → Fun ( 𝑋 𝑁 𝑌 ) ) |