| Step |
Hyp |
Ref |
Expression |
| 1 |
|
invfval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 2 |
|
invfval.n |
⊢ 𝑁 = ( Inv ‘ 𝐶 ) |
| 3 |
|
invfval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 4 |
|
invfval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
|
invfval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 6 |
|
invfval.s |
⊢ 𝑆 = ( Sect ‘ 𝐶 ) |
| 7 |
1 2 3 4 4 6
|
invffval |
⊢ ( 𝜑 → 𝑁 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝑆 𝑦 ) ∩ ◡ ( 𝑦 𝑆 𝑥 ) ) ) ) |
| 8 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝑥 = 𝑋 ) |
| 9 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝑦 = 𝑌 ) |
| 10 |
8 9
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑥 𝑆 𝑦 ) = ( 𝑋 𝑆 𝑌 ) ) |
| 11 |
9 8
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑦 𝑆 𝑥 ) = ( 𝑌 𝑆 𝑋 ) ) |
| 12 |
11
|
cnveqd |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ◡ ( 𝑦 𝑆 𝑥 ) = ◡ ( 𝑌 𝑆 𝑋 ) ) |
| 13 |
10 12
|
ineq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( ( 𝑥 𝑆 𝑦 ) ∩ ◡ ( 𝑦 𝑆 𝑥 ) ) = ( ( 𝑋 𝑆 𝑌 ) ∩ ◡ ( 𝑌 𝑆 𝑋 ) ) ) |
| 14 |
|
ovex |
⊢ ( 𝑋 𝑆 𝑌 ) ∈ V |
| 15 |
14
|
inex1 |
⊢ ( ( 𝑋 𝑆 𝑌 ) ∩ ◡ ( 𝑌 𝑆 𝑋 ) ) ∈ V |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → ( ( 𝑋 𝑆 𝑌 ) ∩ ◡ ( 𝑌 𝑆 𝑋 ) ) ∈ V ) |
| 17 |
7 13 4 5 16
|
ovmpod |
⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) = ( ( 𝑋 𝑆 𝑌 ) ∩ ◡ ( 𝑌 𝑆 𝑋 ) ) ) |