Metamath Proof Explorer


Theorem invfval

Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses invfval.b 𝐵 = ( Base ‘ 𝐶 )
invfval.n 𝑁 = ( Inv ‘ 𝐶 )
invfval.c ( 𝜑𝐶 ∈ Cat )
invfval.x ( 𝜑𝑋𝐵 )
invfval.y ( 𝜑𝑌𝐵 )
invfval.s 𝑆 = ( Sect ‘ 𝐶 )
Assertion invfval ( 𝜑 → ( 𝑋 𝑁 𝑌 ) = ( ( 𝑋 𝑆 𝑌 ) ∩ ( 𝑌 𝑆 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 invfval.b 𝐵 = ( Base ‘ 𝐶 )
2 invfval.n 𝑁 = ( Inv ‘ 𝐶 )
3 invfval.c ( 𝜑𝐶 ∈ Cat )
4 invfval.x ( 𝜑𝑋𝐵 )
5 invfval.y ( 𝜑𝑌𝐵 )
6 invfval.s 𝑆 = ( Sect ‘ 𝐶 )
7 1 2 3 4 4 6 invffval ( 𝜑𝑁 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 𝑆 𝑦 ) ∩ ( 𝑦 𝑆 𝑥 ) ) ) )
8 simprl ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → 𝑥 = 𝑋 )
9 simprr ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → 𝑦 = 𝑌 )
10 8 9 oveq12d ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( 𝑥 𝑆 𝑦 ) = ( 𝑋 𝑆 𝑌 ) )
11 9 8 oveq12d ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( 𝑦 𝑆 𝑥 ) = ( 𝑌 𝑆 𝑋 ) )
12 11 cnveqd ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( 𝑦 𝑆 𝑥 ) = ( 𝑌 𝑆 𝑋 ) )
13 10 12 ineq12d ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( ( 𝑥 𝑆 𝑦 ) ∩ ( 𝑦 𝑆 𝑥 ) ) = ( ( 𝑋 𝑆 𝑌 ) ∩ ( 𝑌 𝑆 𝑋 ) ) )
14 ovex ( 𝑋 𝑆 𝑌 ) ∈ V
15 14 inex1 ( ( 𝑋 𝑆 𝑌 ) ∩ ( 𝑌 𝑆 𝑋 ) ) ∈ V
16 15 a1i ( 𝜑 → ( ( 𝑋 𝑆 𝑌 ) ∩ ( 𝑌 𝑆 𝑋 ) ) ∈ V )
17 7 13 4 5 16 ovmpod ( 𝜑 → ( 𝑋 𝑁 𝑌 ) = ( ( 𝑋 𝑆 𝑌 ) ∩ ( 𝑌 𝑆 𝑋 ) ) )