| Step |
Hyp |
Ref |
Expression |
| 1 |
|
invghm.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
invghm.m |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
| 3 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 4 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
| 5 |
1 2
|
grpinvf |
⊢ ( 𝐺 ∈ Grp → 𝐼 : 𝐵 ⟶ 𝐵 ) |
| 6 |
4 5
|
syl |
⊢ ( 𝐺 ∈ Abel → 𝐼 : 𝐵 ⟶ 𝐵 ) |
| 7 |
1 3 2
|
ablinvadd |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑦 ) ) ) |
| 8 |
7
|
3expb |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐼 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑦 ) ) ) |
| 9 |
1 1 3 3 4 4 6 8
|
isghmd |
⊢ ( 𝐺 ∈ Abel → 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ) |
| 10 |
|
ghmgrp1 |
⊢ ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) → 𝐺 ∈ Grp ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) |
| 12 |
|
simprr |
⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
| 13 |
|
simprl |
⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
| 14 |
1 3 2
|
grpinvadd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) = ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑦 ) ) ) |
| 15 |
11 12 13 14
|
syl3anc |
⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐼 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) = ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑦 ) ) ) |
| 16 |
15
|
fveq2d |
⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) = ( 𝐼 ‘ ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑦 ) ) ) ) |
| 17 |
|
simpl |
⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ) |
| 18 |
1 2
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝐵 ) |
| 19 |
11 13 18
|
syl2anc |
⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝐵 ) |
| 20 |
1 2
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑦 ) ∈ 𝐵 ) |
| 21 |
11 12 20
|
syl2anc |
⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐼 ‘ 𝑦 ) ∈ 𝐵 ) |
| 22 |
1 3 3
|
ghmlin |
⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝐼 ‘ 𝑦 ) ∈ 𝐵 ) → ( 𝐼 ‘ ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑦 ) ) ) = ( ( 𝐼 ‘ ( 𝐼 ‘ 𝑥 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ ( 𝐼 ‘ 𝑦 ) ) ) ) |
| 23 |
17 19 21 22
|
syl3anc |
⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐼 ‘ ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑦 ) ) ) = ( ( 𝐼 ‘ ( 𝐼 ‘ 𝑥 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ ( 𝐼 ‘ 𝑦 ) ) ) ) |
| 24 |
1 2
|
grpinvinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝐼 ‘ 𝑥 ) ) = 𝑥 ) |
| 25 |
11 13 24
|
syl2anc |
⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐼 ‘ ( 𝐼 ‘ 𝑥 ) ) = 𝑥 ) |
| 26 |
1 2
|
grpinvinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝐼 ‘ 𝑦 ) ) = 𝑦 ) |
| 27 |
11 12 26
|
syl2anc |
⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐼 ‘ ( 𝐼 ‘ 𝑦 ) ) = 𝑦 ) |
| 28 |
25 27
|
oveq12d |
⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐼 ‘ ( 𝐼 ‘ 𝑥 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ ( 𝐼 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 29 |
16 23 28
|
3eqtrd |
⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 30 |
1 3
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝐵 ) |
| 31 |
11 12 13 30
|
syl3anc |
⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝐵 ) |
| 32 |
1 2
|
grpinvinv |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 33 |
11 31 32
|
syl2anc |
⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 34 |
29 33
|
eqtr3d |
⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 35 |
34
|
ralrimivva |
⊢ ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 36 |
1 3
|
isabl2 |
⊢ ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 37 |
10 35 36
|
sylanbrc |
⊢ ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) → 𝐺 ∈ Abel ) |
| 38 |
9 37
|
impbii |
⊢ ( 𝐺 ∈ Abel ↔ 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ) |