Metamath Proof Explorer


Theorem invid

Description: The inverse of the identity is the identity. (Contributed by AV, 8-Apr-2020)

Ref Expression
Hypotheses invid.b 𝐵 = ( Base ‘ 𝐶 )
invid.i 𝐼 = ( Id ‘ 𝐶 )
invid.c ( 𝜑𝐶 ∈ Cat )
invid.x ( 𝜑𝑋𝐵 )
Assertion invid ( 𝜑 → ( 𝐼𝑋 ) ( 𝑋 ( Inv ‘ 𝐶 ) 𝑋 ) ( 𝐼𝑋 ) )

Proof

Step Hyp Ref Expression
1 invid.b 𝐵 = ( Base ‘ 𝐶 )
2 invid.i 𝐼 = ( Id ‘ 𝐶 )
3 invid.c ( 𝜑𝐶 ∈ Cat )
4 invid.x ( 𝜑𝑋𝐵 )
5 1 2 3 4 sectid ( 𝜑 → ( 𝐼𝑋 ) ( 𝑋 ( Sect ‘ 𝐶 ) 𝑋 ) ( 𝐼𝑋 ) )
6 eqid ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 )
7 eqid ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 )
8 1 6 3 4 4 7 isinv ( 𝜑 → ( ( 𝐼𝑋 ) ( 𝑋 ( Inv ‘ 𝐶 ) 𝑋 ) ( 𝐼𝑋 ) ↔ ( ( 𝐼𝑋 ) ( 𝑋 ( Sect ‘ 𝐶 ) 𝑋 ) ( 𝐼𝑋 ) ∧ ( 𝐼𝑋 ) ( 𝑋 ( Sect ‘ 𝐶 ) 𝑋 ) ( 𝐼𝑋 ) ) ) )
9 5 5 8 mpbir2and ( 𝜑 → ( 𝐼𝑋 ) ( 𝑋 ( Inv ‘ 𝐶 ) 𝑋 ) ( 𝐼𝑋 ) )