Step |
Hyp |
Ref |
Expression |
1 |
|
invid.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
invid.i |
⊢ 𝐼 = ( Id ‘ 𝐶 ) |
3 |
|
invid.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
invid.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
1 2 3 4
|
sectid |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ( 𝑋 ( Sect ‘ 𝐶 ) 𝑋 ) ( 𝐼 ‘ 𝑋 ) ) |
6 |
|
eqid |
⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) |
7 |
|
eqid |
⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) |
8 |
1 6 3 4 4 7
|
isinv |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑋 ) ( 𝑋 ( Inv ‘ 𝐶 ) 𝑋 ) ( 𝐼 ‘ 𝑋 ) ↔ ( ( 𝐼 ‘ 𝑋 ) ( 𝑋 ( Sect ‘ 𝐶 ) 𝑋 ) ( 𝐼 ‘ 𝑋 ) ∧ ( 𝐼 ‘ 𝑋 ) ( 𝑋 ( Sect ‘ 𝐶 ) 𝑋 ) ( 𝐼 ‘ 𝑋 ) ) ) ) |
9 |
5 5 8
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ( 𝑋 ( Inv ‘ 𝐶 ) 𝑋 ) ( 𝐼 ‘ 𝑋 ) ) |