Step |
Hyp |
Ref |
Expression |
1 |
|
invfval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
invfval.n |
⊢ 𝑁 = ( Inv ‘ 𝐶 ) |
3 |
|
invfval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
invfval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
invfval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
isoval.n |
⊢ 𝐼 = ( Iso ‘ 𝐶 ) |
7 |
|
invinv.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) |
8 |
1 2 3 4 5
|
invsym2 |
⊢ ( 𝜑 → ◡ ( 𝑋 𝑁 𝑌 ) = ( 𝑌 𝑁 𝑋 ) ) |
9 |
8
|
fveq1d |
⊢ ( 𝜑 → ( ◡ ( 𝑋 𝑁 𝑌 ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) = ( ( 𝑌 𝑁 𝑋 ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) ) |
10 |
1 2 3 4 5 6
|
invf1o |
⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) : ( 𝑋 𝐼 𝑌 ) –1-1-onto→ ( 𝑌 𝐼 𝑋 ) ) |
11 |
|
f1ocnvfv1 |
⊢ ( ( ( 𝑋 𝑁 𝑌 ) : ( 𝑋 𝐼 𝑌 ) –1-1-onto→ ( 𝑌 𝐼 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( ◡ ( 𝑋 𝑁 𝑌 ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) = 𝐹 ) |
12 |
10 7 11
|
syl2anc |
⊢ ( 𝜑 → ( ◡ ( 𝑋 𝑁 𝑌 ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) = 𝐹 ) |
13 |
9 12
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑌 𝑁 𝑋 ) ‘ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) = 𝐹 ) |