Description: The inverse of an isomorphism is invers to the isomorphism. (Contributed by AV, 9-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | invisoinv.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
invisoinv.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | ||
invisoinv.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | ||
invisoinv.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
invisoinv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
invisoinv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
invisoinv.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) | ||
Assertion | invisoinvr | ⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑁 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invisoinv.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
2 | invisoinv.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
3 | invisoinv.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
4 | invisoinv.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
5 | invisoinv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
6 | invisoinv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
7 | invisoinv.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) | |
8 | 1 2 3 4 5 6 7 | invisoinvl | ⊢ ( 𝜑 → ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 𝑌 𝑁 𝑋 ) 𝐹 ) |
9 | 1 3 4 5 6 | invsym | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ↔ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 𝑌 𝑁 𝑋 ) 𝐹 ) ) |
10 | 8 9 | mpbird | ⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑁 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) |