Metamath Proof Explorer


Theorem invisoinvr

Description: The inverse of an isomorphism is invers to the isomorphism. (Contributed by AV, 9-Apr-2020)

Ref Expression
Hypotheses invisoinv.b 𝐵 = ( Base ‘ 𝐶 )
invisoinv.i 𝐼 = ( Iso ‘ 𝐶 )
invisoinv.n 𝑁 = ( Inv ‘ 𝐶 )
invisoinv.c ( 𝜑𝐶 ∈ Cat )
invisoinv.x ( 𝜑𝑋𝐵 )
invisoinv.y ( 𝜑𝑌𝐵 )
invisoinv.f ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) )
Assertion invisoinvr ( 𝜑𝐹 ( 𝑋 𝑁 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 invisoinv.b 𝐵 = ( Base ‘ 𝐶 )
2 invisoinv.i 𝐼 = ( Iso ‘ 𝐶 )
3 invisoinv.n 𝑁 = ( Inv ‘ 𝐶 )
4 invisoinv.c ( 𝜑𝐶 ∈ Cat )
5 invisoinv.x ( 𝜑𝑋𝐵 )
6 invisoinv.y ( 𝜑𝑌𝐵 )
7 invisoinv.f ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) )
8 1 2 3 4 5 6 7 invisoinvl ( 𝜑 → ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 𝑌 𝑁 𝑋 ) 𝐹 )
9 1 3 4 5 6 invsym ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ↔ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 𝑌 𝑁 𝑋 ) 𝐹 ) )
10 8 9 mpbird ( 𝜑𝐹 ( 𝑋 𝑁 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) )