Description: The inverse of an isomorphism is invers to the isomorphism. (Contributed by AV, 9-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invisoinv.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| invisoinv.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | ||
| invisoinv.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | ||
| invisoinv.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| invisoinv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| invisoinv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| invisoinv.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) | ||
| Assertion | invisoinvr | ⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑁 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invisoinv.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | invisoinv.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 3 | invisoinv.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| 4 | invisoinv.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 5 | invisoinv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | invisoinv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | invisoinv.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) | |
| 8 | 1 2 3 4 5 6 7 | invisoinvl | ⊢ ( 𝜑 → ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 𝑌 𝑁 𝑋 ) 𝐹 ) |
| 9 | 1 3 4 5 6 | invsym | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ↔ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 𝑌 𝑁 𝑋 ) 𝐹 ) ) |
| 10 | 8 9 | mpbird | ⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑁 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) |