| Step |
Hyp |
Ref |
Expression |
| 1 |
|
invlmhm.b |
⊢ 𝐼 = ( invg ‘ 𝑀 ) |
| 2 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
| 3 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
| 4 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
| 6 |
|
id |
⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ LMod ) |
| 7 |
|
eqidd |
⊢ ( 𝑀 ∈ LMod → ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) ) |
| 8 |
|
lmodabl |
⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ Abel ) |
| 9 |
2 1
|
invghm |
⊢ ( 𝑀 ∈ Abel ↔ 𝐼 ∈ ( 𝑀 GrpHom 𝑀 ) ) |
| 10 |
8 9
|
sylib |
⊢ ( 𝑀 ∈ LMod → 𝐼 ∈ ( 𝑀 GrpHom 𝑀 ) ) |
| 11 |
2 4 3 1 5
|
lmodvsinv2 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝐼 ‘ 𝑦 ) ) = ( 𝐼 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) ) |
| 12 |
11
|
eqcomd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝐼 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝐼 ‘ 𝑦 ) ) ) |
| 13 |
12
|
3expb |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐼 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝐼 ‘ 𝑦 ) ) ) |
| 14 |
2 3 3 4 4 5 6 6 7 10 13
|
islmhmd |
⊢ ( 𝑀 ∈ LMod → 𝐼 ∈ ( 𝑀 LMHom 𝑀 ) ) |