Step |
Hyp |
Ref |
Expression |
1 |
|
invoppggim.o |
⊢ 𝑂 = ( oppg ‘ 𝐺 ) |
2 |
|
invoppggim.i |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
4 |
1 3
|
oppgbas |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝑂 ) |
5 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) |
7 |
|
id |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Grp ) |
8 |
1
|
oppggrp |
⊢ ( 𝐺 ∈ Grp → 𝑂 ∈ Grp ) |
9 |
3 2
|
grpinvf |
⊢ ( 𝐺 ∈ Grp → 𝐼 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) |
10 |
3 5 2
|
grpinvadd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐼 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐼 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑥 ) ) ) |
11 |
10
|
3expb |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝐼 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐼 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑥 ) ) ) |
12 |
5 1 6
|
oppgplus |
⊢ ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝑂 ) ( 𝐼 ‘ 𝑦 ) ) = ( ( 𝐼 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑥 ) ) |
13 |
11 12
|
eqtr4di |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝐼 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝑂 ) ( 𝐼 ‘ 𝑦 ) ) ) |
14 |
3 4 5 6 7 8 9 13
|
isghmd |
⊢ ( 𝐺 ∈ Grp → 𝐼 ∈ ( 𝐺 GrpHom 𝑂 ) ) |
15 |
3 2 7
|
grpinvf1o |
⊢ ( 𝐺 ∈ Grp → 𝐼 : ( Base ‘ 𝐺 ) –1-1-onto→ ( Base ‘ 𝐺 ) ) |
16 |
3 4
|
isgim |
⊢ ( 𝐼 ∈ ( 𝐺 GrpIso 𝑂 ) ↔ ( 𝐼 ∈ ( 𝐺 GrpHom 𝑂 ) ∧ 𝐼 : ( Base ‘ 𝐺 ) –1-1-onto→ ( Base ‘ 𝐺 ) ) ) |
17 |
14 15 16
|
sylanbrc |
⊢ ( 𝐺 ∈ Grp → 𝐼 ∈ ( 𝐺 GrpIso 𝑂 ) ) |