| Step | Hyp | Ref | Expression | 
						
							| 1 |  | invoppggim.o | ⊢ 𝑂  =  ( oppg ‘ 𝐺 ) | 
						
							| 2 |  | invoppggim.i | ⊢ 𝐼  =  ( invg ‘ 𝐺 ) | 
						
							| 3 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 4 | 1 3 | oppgbas | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝑂 ) | 
						
							| 5 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 6 |  | eqid | ⊢ ( +g ‘ 𝑂 )  =  ( +g ‘ 𝑂 ) | 
						
							| 7 |  | id | ⊢ ( 𝐺  ∈  Grp  →  𝐺  ∈  Grp ) | 
						
							| 8 | 1 | oppggrp | ⊢ ( 𝐺  ∈  Grp  →  𝑂  ∈  Grp ) | 
						
							| 9 | 3 2 | grpinvf | ⊢ ( 𝐺  ∈  Grp  →  𝐼 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) | 
						
							| 10 | 3 5 2 | grpinvadd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  ( Base ‘ 𝐺 )  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝐼 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) )  =  ( ( 𝐼 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑥 ) ) ) | 
						
							| 11 | 10 | 3expb | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) ) )  →  ( 𝐼 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) )  =  ( ( 𝐼 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑥 ) ) ) | 
						
							| 12 | 5 1 6 | oppgplus | ⊢ ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝑂 ) ( 𝐼 ‘ 𝑦 ) )  =  ( ( 𝐼 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑥 ) ) | 
						
							| 13 | 11 12 | eqtr4di | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) ) )  →  ( 𝐼 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) )  =  ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝑂 ) ( 𝐼 ‘ 𝑦 ) ) ) | 
						
							| 14 | 3 4 5 6 7 8 9 13 | isghmd | ⊢ ( 𝐺  ∈  Grp  →  𝐼  ∈  ( 𝐺  GrpHom  𝑂 ) ) | 
						
							| 15 | 3 2 7 | grpinvf1o | ⊢ ( 𝐺  ∈  Grp  →  𝐼 : ( Base ‘ 𝐺 ) –1-1-onto→ ( Base ‘ 𝐺 ) ) | 
						
							| 16 | 3 4 | isgim | ⊢ ( 𝐼  ∈  ( 𝐺  GrpIso  𝑂 )  ↔  ( 𝐼  ∈  ( 𝐺  GrpHom  𝑂 )  ∧  𝐼 : ( Base ‘ 𝐺 ) –1-1-onto→ ( Base ‘ 𝐺 ) ) ) | 
						
							| 17 | 14 15 16 | sylanbrc | ⊢ ( 𝐺  ∈  Grp  →  𝐼  ∈  ( 𝐺  GrpIso  𝑂 ) ) |