Metamath Proof Explorer


Theorem invrcn

Description: The multiplicative inverse function is a continuous function from the unit group (that is, the nonzero numbers) to the field. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses mulrcn.j 𝐽 = ( TopOpen ‘ 𝑅 )
invrcn.i 𝐼 = ( invr𝑅 )
invrcn.u 𝑈 = ( Unit ‘ 𝑅 )
Assertion invrcn ( 𝑅 ∈ TopDRing → 𝐼 ∈ ( ( 𝐽t 𝑈 ) Cn 𝐽 ) )

Proof

Step Hyp Ref Expression
1 mulrcn.j 𝐽 = ( TopOpen ‘ 𝑅 )
2 invrcn.i 𝐼 = ( invr𝑅 )
3 invrcn.u 𝑈 = ( Unit ‘ 𝑅 )
4 tdrgtps ( 𝑅 ∈ TopDRing → 𝑅 ∈ TopSp )
5 1 tpstop ( 𝑅 ∈ TopSp → 𝐽 ∈ Top )
6 cnrest2r ( 𝐽 ∈ Top → ( ( 𝐽t 𝑈 ) Cn ( 𝐽t 𝑈 ) ) ⊆ ( ( 𝐽t 𝑈 ) Cn 𝐽 ) )
7 4 5 6 3syl ( 𝑅 ∈ TopDRing → ( ( 𝐽t 𝑈 ) Cn ( 𝐽t 𝑈 ) ) ⊆ ( ( 𝐽t 𝑈 ) Cn 𝐽 ) )
8 1 2 3 invrcn2 ( 𝑅 ∈ TopDRing → 𝐼 ∈ ( ( 𝐽t 𝑈 ) Cn ( 𝐽t 𝑈 ) ) )
9 7 8 sseldd ( 𝑅 ∈ TopDRing → 𝐼 ∈ ( ( 𝐽t 𝑈 ) Cn 𝐽 ) )