Description: The multiplicative inverse function is a continuous function from the unit group (that is, the nonzero numbers) to the field. (Contributed by Mario Carneiro, 5-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulrcn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑅 ) | |
invrcn.i | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | ||
invrcn.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
Assertion | invrcn | ⊢ ( 𝑅 ∈ TopDRing → 𝐼 ∈ ( ( 𝐽 ↾t 𝑈 ) Cn 𝐽 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulrcn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑅 ) | |
2 | invrcn.i | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | |
3 | invrcn.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
4 | tdrgtps | ⊢ ( 𝑅 ∈ TopDRing → 𝑅 ∈ TopSp ) | |
5 | 1 | tpstop | ⊢ ( 𝑅 ∈ TopSp → 𝐽 ∈ Top ) |
6 | cnrest2r | ⊢ ( 𝐽 ∈ Top → ( ( 𝐽 ↾t 𝑈 ) Cn ( 𝐽 ↾t 𝑈 ) ) ⊆ ( ( 𝐽 ↾t 𝑈 ) Cn 𝐽 ) ) | |
7 | 4 5 6 | 3syl | ⊢ ( 𝑅 ∈ TopDRing → ( ( 𝐽 ↾t 𝑈 ) Cn ( 𝐽 ↾t 𝑈 ) ) ⊆ ( ( 𝐽 ↾t 𝑈 ) Cn 𝐽 ) ) |
8 | 1 2 3 | invrcn2 | ⊢ ( 𝑅 ∈ TopDRing → 𝐼 ∈ ( ( 𝐽 ↾t 𝑈 ) Cn ( 𝐽 ↾t 𝑈 ) ) ) |
9 | 7 8 | sseldd | ⊢ ( 𝑅 ∈ TopDRing → 𝐼 ∈ ( ( 𝐽 ↾t 𝑈 ) Cn 𝐽 ) ) |