| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulrcn.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑅 ) |
| 2 |
|
invrcn.i |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
| 3 |
|
invrcn.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 4 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 5 |
4 3
|
tdrgunit |
⊢ ( 𝑅 ∈ TopDRing → ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ∈ TopGrp ) |
| 6 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) |
| 7 |
4 1
|
mgptopn |
⊢ 𝐽 = ( TopOpen ‘ ( mulGrp ‘ 𝑅 ) ) |
| 8 |
6 7
|
resstopn |
⊢ ( 𝐽 ↾t 𝑈 ) = ( TopOpen ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) |
| 9 |
3 6 2
|
invrfval |
⊢ 𝐼 = ( invg ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) |
| 10 |
8 9
|
tgpinv |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ∈ TopGrp → 𝐼 ∈ ( ( 𝐽 ↾t 𝑈 ) Cn ( 𝐽 ↾t 𝑈 ) ) ) |
| 11 |
5 10
|
syl |
⊢ ( 𝑅 ∈ TopDRing → 𝐼 ∈ ( ( 𝐽 ↾t 𝑈 ) Cn ( 𝐽 ↾t 𝑈 ) ) ) |