| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngidpropd.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 2 |
|
rngidpropd.2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
| 3 |
|
rngidpropd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
| 4 |
|
eqid |
⊢ ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐾 ) |
| 5 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) = ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) |
| 6 |
4 5
|
unitgrpbas |
⊢ ( Unit ‘ 𝐾 ) = ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → ( Unit ‘ 𝐾 ) = ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) ) |
| 8 |
1 2 3
|
unitpropd |
⊢ ( 𝜑 → ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐿 ) ) |
| 9 |
|
eqid |
⊢ ( Unit ‘ 𝐿 ) = ( Unit ‘ 𝐿 ) |
| 10 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) = ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) |
| 11 |
9 10
|
unitgrpbas |
⊢ ( Unit ‘ 𝐿 ) = ( Base ‘ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) ) |
| 12 |
8 11
|
eqtrdi |
⊢ ( 𝜑 → ( Unit ‘ 𝐾 ) = ( Base ‘ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) ) ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 14 |
13 4
|
unitss |
⊢ ( Unit ‘ 𝐾 ) ⊆ ( Base ‘ 𝐾 ) |
| 15 |
14 1
|
sseqtrrid |
⊢ ( 𝜑 → ( Unit ‘ 𝐾 ) ⊆ 𝐵 ) |
| 16 |
15
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ 𝐾 ) ) → 𝑥 ∈ 𝐵 ) |
| 17 |
15
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Unit ‘ 𝐾 ) ) → 𝑦 ∈ 𝐵 ) |
| 18 |
16 17
|
anim12dan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ 𝐾 ) ∧ 𝑦 ∈ ( Unit ‘ 𝐾 ) ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 19 |
18 3
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ 𝐾 ) ∧ 𝑦 ∈ ( Unit ‘ 𝐾 ) ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
| 20 |
|
fvex |
⊢ ( Unit ‘ 𝐾 ) ∈ V |
| 21 |
|
eqid |
⊢ ( mulGrp ‘ 𝐾 ) = ( mulGrp ‘ 𝐾 ) |
| 22 |
|
eqid |
⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) |
| 23 |
21 22
|
mgpplusg |
⊢ ( .r ‘ 𝐾 ) = ( +g ‘ ( mulGrp ‘ 𝐾 ) ) |
| 24 |
5 23
|
ressplusg |
⊢ ( ( Unit ‘ 𝐾 ) ∈ V → ( .r ‘ 𝐾 ) = ( +g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) ) |
| 25 |
20 24
|
ax-mp |
⊢ ( .r ‘ 𝐾 ) = ( +g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) |
| 26 |
25
|
oveqi |
⊢ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) 𝑦 ) |
| 27 |
|
fvex |
⊢ ( Unit ‘ 𝐿 ) ∈ V |
| 28 |
|
eqid |
⊢ ( mulGrp ‘ 𝐿 ) = ( mulGrp ‘ 𝐿 ) |
| 29 |
|
eqid |
⊢ ( .r ‘ 𝐿 ) = ( .r ‘ 𝐿 ) |
| 30 |
28 29
|
mgpplusg |
⊢ ( .r ‘ 𝐿 ) = ( +g ‘ ( mulGrp ‘ 𝐿 ) ) |
| 31 |
10 30
|
ressplusg |
⊢ ( ( Unit ‘ 𝐿 ) ∈ V → ( .r ‘ 𝐿 ) = ( +g ‘ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) ) ) |
| 32 |
27 31
|
ax-mp |
⊢ ( .r ‘ 𝐿 ) = ( +g ‘ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) ) |
| 33 |
32
|
oveqi |
⊢ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) ) 𝑦 ) |
| 34 |
19 26 33
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ 𝐾 ) ∧ 𝑦 ∈ ( Unit ‘ 𝐾 ) ) ) → ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) ) 𝑦 ) ) |
| 35 |
7 12 34
|
grpinvpropd |
⊢ ( 𝜑 → ( invg ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) = ( invg ‘ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) ) ) |
| 36 |
|
eqid |
⊢ ( invr ‘ 𝐾 ) = ( invr ‘ 𝐾 ) |
| 37 |
4 5 36
|
invrfval |
⊢ ( invr ‘ 𝐾 ) = ( invg ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) |
| 38 |
|
eqid |
⊢ ( invr ‘ 𝐿 ) = ( invr ‘ 𝐿 ) |
| 39 |
9 10 38
|
invrfval |
⊢ ( invr ‘ 𝐿 ) = ( invg ‘ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) ) |
| 40 |
35 37 39
|
3eqtr4g |
⊢ ( 𝜑 → ( invr ‘ 𝐾 ) = ( invr ‘ 𝐿 ) ) |