Step |
Hyp |
Ref |
Expression |
1 |
|
rngidpropd.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
2 |
|
rngidpropd.2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
3 |
|
rngidpropd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
4 |
|
eqid |
⊢ ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐾 ) |
5 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) = ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) |
6 |
4 5
|
unitgrpbas |
⊢ ( Unit ‘ 𝐾 ) = ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) |
7 |
6
|
a1i |
⊢ ( 𝜑 → ( Unit ‘ 𝐾 ) = ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) ) |
8 |
1 2 3
|
unitpropd |
⊢ ( 𝜑 → ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐿 ) ) |
9 |
|
eqid |
⊢ ( Unit ‘ 𝐿 ) = ( Unit ‘ 𝐿 ) |
10 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) = ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) |
11 |
9 10
|
unitgrpbas |
⊢ ( Unit ‘ 𝐿 ) = ( Base ‘ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) ) |
12 |
8 11
|
eqtrdi |
⊢ ( 𝜑 → ( Unit ‘ 𝐾 ) = ( Base ‘ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) ) ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
14 |
13 4
|
unitss |
⊢ ( Unit ‘ 𝐾 ) ⊆ ( Base ‘ 𝐾 ) |
15 |
14 1
|
sseqtrrid |
⊢ ( 𝜑 → ( Unit ‘ 𝐾 ) ⊆ 𝐵 ) |
16 |
15
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ 𝐾 ) ) → 𝑥 ∈ 𝐵 ) |
17 |
15
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Unit ‘ 𝐾 ) ) → 𝑦 ∈ 𝐵 ) |
18 |
16 17
|
anim12dan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ 𝐾 ) ∧ 𝑦 ∈ ( Unit ‘ 𝐾 ) ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
19 |
18 3
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ 𝐾 ) ∧ 𝑦 ∈ ( Unit ‘ 𝐾 ) ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
20 |
|
fvex |
⊢ ( Unit ‘ 𝐾 ) ∈ V |
21 |
|
eqid |
⊢ ( mulGrp ‘ 𝐾 ) = ( mulGrp ‘ 𝐾 ) |
22 |
|
eqid |
⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) |
23 |
21 22
|
mgpplusg |
⊢ ( .r ‘ 𝐾 ) = ( +g ‘ ( mulGrp ‘ 𝐾 ) ) |
24 |
5 23
|
ressplusg |
⊢ ( ( Unit ‘ 𝐾 ) ∈ V → ( .r ‘ 𝐾 ) = ( +g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) ) |
25 |
20 24
|
ax-mp |
⊢ ( .r ‘ 𝐾 ) = ( +g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) |
26 |
25
|
oveqi |
⊢ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) 𝑦 ) |
27 |
|
fvex |
⊢ ( Unit ‘ 𝐿 ) ∈ V |
28 |
|
eqid |
⊢ ( mulGrp ‘ 𝐿 ) = ( mulGrp ‘ 𝐿 ) |
29 |
|
eqid |
⊢ ( .r ‘ 𝐿 ) = ( .r ‘ 𝐿 ) |
30 |
28 29
|
mgpplusg |
⊢ ( .r ‘ 𝐿 ) = ( +g ‘ ( mulGrp ‘ 𝐿 ) ) |
31 |
10 30
|
ressplusg |
⊢ ( ( Unit ‘ 𝐿 ) ∈ V → ( .r ‘ 𝐿 ) = ( +g ‘ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) ) ) |
32 |
27 31
|
ax-mp |
⊢ ( .r ‘ 𝐿 ) = ( +g ‘ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) ) |
33 |
32
|
oveqi |
⊢ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) ) 𝑦 ) |
34 |
19 26 33
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ 𝐾 ) ∧ 𝑦 ∈ ( Unit ‘ 𝐾 ) ) ) → ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) ) 𝑦 ) ) |
35 |
7 12 34
|
grpinvpropd |
⊢ ( 𝜑 → ( invg ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) = ( invg ‘ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) ) ) |
36 |
|
eqid |
⊢ ( invr ‘ 𝐾 ) = ( invr ‘ 𝐾 ) |
37 |
4 5 36
|
invrfval |
⊢ ( invr ‘ 𝐾 ) = ( invg ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) |
38 |
|
eqid |
⊢ ( invr ‘ 𝐿 ) = ( invr ‘ 𝐿 ) |
39 |
9 10 38
|
invrfval |
⊢ ( invr ‘ 𝐿 ) = ( invg ‘ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) ) |
40 |
35 37 39
|
3eqtr4g |
⊢ ( 𝜑 → ( invr ‘ 𝐾 ) = ( invr ‘ 𝐿 ) ) |