| Step | Hyp | Ref | Expression | 
						
							| 1 |  | invrvald.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | invrvald.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 3 |  | invrvald.o | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 4 |  | invrvald.u | ⊢ 𝑈  =  ( Unit ‘ 𝑅 ) | 
						
							| 5 |  | invrvald.i | ⊢ 𝐼  =  ( invr ‘ 𝑅 ) | 
						
							| 6 |  | invrvald.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 7 |  | invrvald.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 8 |  | invrvald.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 9 |  | invrvald.xy | ⊢ ( 𝜑  →  ( 𝑋  ·  𝑌 )  =   1  ) | 
						
							| 10 |  | invrvald.yx | ⊢ ( 𝜑  →  ( 𝑌  ·  𝑋 )  =   1  ) | 
						
							| 11 |  | eqid | ⊢ ( ∥r ‘ 𝑅 )  =  ( ∥r ‘ 𝑅 ) | 
						
							| 12 | 1 11 2 | dvdsrmul | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑋 ( ∥r ‘ 𝑅 ) ( 𝑌  ·  𝑋 ) ) | 
						
							| 13 | 7 8 12 | syl2anc | ⊢ ( 𝜑  →  𝑋 ( ∥r ‘ 𝑅 ) ( 𝑌  ·  𝑋 ) ) | 
						
							| 14 | 13 10 | breqtrd | ⊢ ( 𝜑  →  𝑋 ( ∥r ‘ 𝑅 )  1  ) | 
						
							| 15 |  | eqid | ⊢ ( oppr ‘ 𝑅 )  =  ( oppr ‘ 𝑅 ) | 
						
							| 16 | 15 1 | opprbas | ⊢ 𝐵  =  ( Base ‘ ( oppr ‘ 𝑅 ) ) | 
						
							| 17 |  | eqid | ⊢ ( ∥r ‘ ( oppr ‘ 𝑅 ) )  =  ( ∥r ‘ ( oppr ‘ 𝑅 ) ) | 
						
							| 18 |  | eqid | ⊢ ( .r ‘ ( oppr ‘ 𝑅 ) )  =  ( .r ‘ ( oppr ‘ 𝑅 ) ) | 
						
							| 19 | 16 17 18 | dvdsrmul | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 𝑌 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) ) | 
						
							| 20 | 7 8 19 | syl2anc | ⊢ ( 𝜑  →  𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 𝑌 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) ) | 
						
							| 21 | 1 2 15 18 | opprmul | ⊢ ( 𝑌 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 )  =  ( 𝑋  ·  𝑌 ) | 
						
							| 22 | 21 9 | eqtrid | ⊢ ( 𝜑  →  ( 𝑌 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 )  =   1  ) | 
						
							| 23 | 20 22 | breqtrd | ⊢ ( 𝜑  →  𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) )  1  ) | 
						
							| 24 | 4 3 11 15 17 | isunit | ⊢ ( 𝑋  ∈  𝑈  ↔  ( 𝑋 ( ∥r ‘ 𝑅 )  1   ∧  𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) )  1  ) ) | 
						
							| 25 | 14 23 24 | sylanbrc | ⊢ ( 𝜑  →  𝑋  ∈  𝑈 ) | 
						
							| 26 |  | eqid | ⊢ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 )  =  ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) | 
						
							| 27 | 4 26 3 | unitgrpid | ⊢ ( 𝑅  ∈  Ring  →   1   =  ( 0g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) ) ) | 
						
							| 28 | 6 27 | syl | ⊢ ( 𝜑  →   1   =  ( 0g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) ) ) | 
						
							| 29 | 9 28 | eqtrd | ⊢ ( 𝜑  →  ( 𝑋  ·  𝑌 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) ) ) | 
						
							| 30 | 4 26 | unitgrp | ⊢ ( 𝑅  ∈  Ring  →  ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 )  ∈  Grp ) | 
						
							| 31 | 6 30 | syl | ⊢ ( 𝜑  →  ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 )  ∈  Grp ) | 
						
							| 32 | 1 11 2 | dvdsrmul | ⊢ ( ( 𝑌  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  𝑌 ( ∥r ‘ 𝑅 ) ( 𝑋  ·  𝑌 ) ) | 
						
							| 33 | 8 7 32 | syl2anc | ⊢ ( 𝜑  →  𝑌 ( ∥r ‘ 𝑅 ) ( 𝑋  ·  𝑌 ) ) | 
						
							| 34 | 33 9 | breqtrd | ⊢ ( 𝜑  →  𝑌 ( ∥r ‘ 𝑅 )  1  ) | 
						
							| 35 | 16 17 18 | dvdsrmul | ⊢ ( ( 𝑌  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  𝑌 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 𝑋 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑌 ) ) | 
						
							| 36 | 8 7 35 | syl2anc | ⊢ ( 𝜑  →  𝑌 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 𝑋 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑌 ) ) | 
						
							| 37 | 1 2 15 18 | opprmul | ⊢ ( 𝑋 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑌 )  =  ( 𝑌  ·  𝑋 ) | 
						
							| 38 | 37 10 | eqtrid | ⊢ ( 𝜑  →  ( 𝑋 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑌 )  =   1  ) | 
						
							| 39 | 36 38 | breqtrd | ⊢ ( 𝜑  →  𝑌 ( ∥r ‘ ( oppr ‘ 𝑅 ) )  1  ) | 
						
							| 40 | 4 3 11 15 17 | isunit | ⊢ ( 𝑌  ∈  𝑈  ↔  ( 𝑌 ( ∥r ‘ 𝑅 )  1   ∧  𝑌 ( ∥r ‘ ( oppr ‘ 𝑅 ) )  1  ) ) | 
						
							| 41 | 34 39 40 | sylanbrc | ⊢ ( 𝜑  →  𝑌  ∈  𝑈 ) | 
						
							| 42 | 4 26 | unitgrpbas | ⊢ 𝑈  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) ) | 
						
							| 43 | 4 | fvexi | ⊢ 𝑈  ∈  V | 
						
							| 44 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 45 | 44 2 | mgpplusg | ⊢  ·   =  ( +g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 46 | 26 45 | ressplusg | ⊢ ( 𝑈  ∈  V  →   ·   =  ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) ) ) | 
						
							| 47 | 43 46 | ax-mp | ⊢  ·   =  ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) ) | 
						
							| 48 |  | eqid | ⊢ ( 0g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) )  =  ( 0g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) ) | 
						
							| 49 | 4 26 5 | invrfval | ⊢ 𝐼  =  ( invg ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) ) | 
						
							| 50 | 42 47 48 49 | grpinvid1 | ⊢ ( ( ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 )  ∈  Grp  ∧  𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑈 )  →  ( ( 𝐼 ‘ 𝑋 )  =  𝑌  ↔  ( 𝑋  ·  𝑌 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) ) ) ) | 
						
							| 51 | 31 25 41 50 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ 𝑋 )  =  𝑌  ↔  ( 𝑋  ·  𝑌 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) ) ) ) | 
						
							| 52 | 29 51 | mpbird | ⊢ ( 𝜑  →  ( 𝐼 ‘ 𝑋 )  =  𝑌 ) | 
						
							| 53 | 25 52 | jca | ⊢ ( 𝜑  →  ( 𝑋  ∈  𝑈  ∧  ( 𝐼 ‘ 𝑋 )  =  𝑌 ) ) |