| Step | Hyp | Ref | Expression | 
						
							| 1 |  | invfval.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 2 |  | invfval.n | ⊢ 𝑁  =  ( Inv ‘ 𝐶 ) | 
						
							| 3 |  | invfval.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 4 |  | invfval.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 5 |  | invfval.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 6 |  | eqid | ⊢ ( Sect ‘ 𝐶 )  =  ( Sect ‘ 𝐶 ) | 
						
							| 7 | 1 2 3 4 5 6 | isinv | ⊢ ( 𝜑  →  ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺  ↔  ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺  ∧  𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) ) | 
						
							| 8 | 7 | biancomd | ⊢ ( 𝜑  →  ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺  ↔  ( 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹  ∧  𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ) ) ) | 
						
							| 9 | 1 2 3 5 4 6 | isinv | ⊢ ( 𝜑  →  ( 𝐺 ( 𝑌 𝑁 𝑋 ) 𝐹  ↔  ( 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹  ∧  𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ) ) ) | 
						
							| 10 | 8 9 | bitr4d | ⊢ ( 𝜑  →  ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺  ↔  𝐺 ( 𝑌 𝑁 𝑋 ) 𝐹 ) ) |