| Step |
Hyp |
Ref |
Expression |
| 1 |
|
invfval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 2 |
|
invfval.n |
⊢ 𝑁 = ( Inv ‘ 𝐶 ) |
| 3 |
|
invfval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 4 |
|
invss.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
|
invss.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 6 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 7 |
1 2 3 5 4 6
|
invss |
⊢ ( 𝜑 → ( 𝑌 𝑁 𝑋 ) ⊆ ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) |
| 8 |
|
relxp |
⊢ Rel ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 9 |
|
relss |
⊢ ( ( 𝑌 𝑁 𝑋 ) ⊆ ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) → ( Rel ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) → Rel ( 𝑌 𝑁 𝑋 ) ) ) |
| 10 |
7 8 9
|
mpisyl |
⊢ ( 𝜑 → Rel ( 𝑌 𝑁 𝑋 ) ) |
| 11 |
|
relcnv |
⊢ Rel ◡ ( 𝑋 𝑁 𝑌 ) |
| 12 |
10 11
|
jctil |
⊢ ( 𝜑 → ( Rel ◡ ( 𝑋 𝑁 𝑌 ) ∧ Rel ( 𝑌 𝑁 𝑋 ) ) ) |
| 13 |
1 2 3 4 5
|
invsym |
⊢ ( 𝜑 → ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 ↔ 𝑔 ( 𝑌 𝑁 𝑋 ) 𝑓 ) ) |
| 14 |
|
vex |
⊢ 𝑔 ∈ V |
| 15 |
|
vex |
⊢ 𝑓 ∈ V |
| 16 |
14 15
|
brcnv |
⊢ ( 𝑔 ◡ ( 𝑋 𝑁 𝑌 ) 𝑓 ↔ 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 ) |
| 17 |
|
df-br |
⊢ ( 𝑔 ◡ ( 𝑋 𝑁 𝑌 ) 𝑓 ↔ 〈 𝑔 , 𝑓 〉 ∈ ◡ ( 𝑋 𝑁 𝑌 ) ) |
| 18 |
16 17
|
bitr3i |
⊢ ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 ↔ 〈 𝑔 , 𝑓 〉 ∈ ◡ ( 𝑋 𝑁 𝑌 ) ) |
| 19 |
|
df-br |
⊢ ( 𝑔 ( 𝑌 𝑁 𝑋 ) 𝑓 ↔ 〈 𝑔 , 𝑓 〉 ∈ ( 𝑌 𝑁 𝑋 ) ) |
| 20 |
13 18 19
|
3bitr3g |
⊢ ( 𝜑 → ( 〈 𝑔 , 𝑓 〉 ∈ ◡ ( 𝑋 𝑁 𝑌 ) ↔ 〈 𝑔 , 𝑓 〉 ∈ ( 𝑌 𝑁 𝑋 ) ) ) |
| 21 |
20
|
eqrelrdv2 |
⊢ ( ( ( Rel ◡ ( 𝑋 𝑁 𝑌 ) ∧ Rel ( 𝑌 𝑁 𝑋 ) ) ∧ 𝜑 ) → ◡ ( 𝑋 𝑁 𝑌 ) = ( 𝑌 𝑁 𝑋 ) ) |
| 22 |
12 21
|
mpancom |
⊢ ( 𝜑 → ◡ ( 𝑋 𝑁 𝑌 ) = ( 𝑌 𝑁 𝑋 ) ) |