| Step | Hyp | Ref | Expression | 
						
							| 1 |  | invfval.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 2 |  | invfval.n | ⊢ 𝑁  =  ( Inv ‘ 𝐶 ) | 
						
							| 3 |  | invfval.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 4 |  | invfval.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 5 |  | invfval.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 6 |  | eqid | ⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 ) | 
						
							| 7 | 1 2 3 5 4 6 | invss | ⊢ ( 𝜑  →  ( 𝑌 𝑁 𝑋 )  ⊆  ( ( 𝑌 ( Hom  ‘ 𝐶 ) 𝑋 )  ×  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑌 ) ) ) | 
						
							| 8 |  | relxp | ⊢ Rel  ( ( 𝑌 ( Hom  ‘ 𝐶 ) 𝑋 )  ×  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑌 ) ) | 
						
							| 9 |  | relss | ⊢ ( ( 𝑌 𝑁 𝑋 )  ⊆  ( ( 𝑌 ( Hom  ‘ 𝐶 ) 𝑋 )  ×  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑌 ) )  →  ( Rel  ( ( 𝑌 ( Hom  ‘ 𝐶 ) 𝑋 )  ×  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑌 ) )  →  Rel  ( 𝑌 𝑁 𝑋 ) ) ) | 
						
							| 10 | 7 8 9 | mpisyl | ⊢ ( 𝜑  →  Rel  ( 𝑌 𝑁 𝑋 ) ) | 
						
							| 11 |  | relcnv | ⊢ Rel  ◡ ( 𝑋 𝑁 𝑌 ) | 
						
							| 12 | 10 11 | jctil | ⊢ ( 𝜑  →  ( Rel  ◡ ( 𝑋 𝑁 𝑌 )  ∧  Rel  ( 𝑌 𝑁 𝑋 ) ) ) | 
						
							| 13 | 1 2 3 4 5 | invsym | ⊢ ( 𝜑  →  ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔  ↔  𝑔 ( 𝑌 𝑁 𝑋 ) 𝑓 ) ) | 
						
							| 14 |  | vex | ⊢ 𝑔  ∈  V | 
						
							| 15 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 16 | 14 15 | brcnv | ⊢ ( 𝑔 ◡ ( 𝑋 𝑁 𝑌 ) 𝑓  ↔  𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 ) | 
						
							| 17 |  | df-br | ⊢ ( 𝑔 ◡ ( 𝑋 𝑁 𝑌 ) 𝑓  ↔  〈 𝑔 ,  𝑓 〉  ∈  ◡ ( 𝑋 𝑁 𝑌 ) ) | 
						
							| 18 | 16 17 | bitr3i | ⊢ ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔  ↔  〈 𝑔 ,  𝑓 〉  ∈  ◡ ( 𝑋 𝑁 𝑌 ) ) | 
						
							| 19 |  | df-br | ⊢ ( 𝑔 ( 𝑌 𝑁 𝑋 ) 𝑓  ↔  〈 𝑔 ,  𝑓 〉  ∈  ( 𝑌 𝑁 𝑋 ) ) | 
						
							| 20 | 13 18 19 | 3bitr3g | ⊢ ( 𝜑  →  ( 〈 𝑔 ,  𝑓 〉  ∈  ◡ ( 𝑋 𝑁 𝑌 )  ↔  〈 𝑔 ,  𝑓 〉  ∈  ( 𝑌 𝑁 𝑋 ) ) ) | 
						
							| 21 | 20 | eqrelrdv2 | ⊢ ( ( ( Rel  ◡ ( 𝑋 𝑁 𝑌 )  ∧  Rel  ( 𝑌 𝑁 𝑋 ) )  ∧  𝜑 )  →  ◡ ( 𝑋 𝑁 𝑌 )  =  ( 𝑌 𝑁 𝑋 ) ) | 
						
							| 22 | 12 21 | mpancom | ⊢ ( 𝜑  →  ◡ ( 𝑋 𝑁 𝑌 )  =  ( 𝑌 𝑁 𝑋 ) ) |