Metamath Proof Explorer


Theorem inxp

Description: Intersection of two Cartesian products. Exercise 9 of TakeutiZaring p. 25. (Contributed by NM, 3-Aug-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011) Avoid ax-10 , ax-12 . (Revised by SN, 5-May-2025)

Ref Expression
Assertion inxp ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × 𝐷 ) ) = ( ( 𝐴𝐶 ) × ( 𝐵𝐷 ) )

Proof

Step Hyp Ref Expression
1 relinxp Rel ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × 𝐷 ) )
2 relxp Rel ( ( 𝐴𝐶 ) × ( 𝐵𝐷 ) )
3 an4 ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑥𝐶𝑦𝐷 ) ) ↔ ( ( 𝑥𝐴𝑥𝐶 ) ∧ ( 𝑦𝐵𝑦𝐷 ) ) )
4 opelxp ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑥𝐴𝑦𝐵 ) )
5 opelxp ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐶 × 𝐷 ) ↔ ( 𝑥𝐶𝑦𝐷 ) )
6 4 5 anbi12i ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × 𝐵 ) ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐶 × 𝐷 ) ) ↔ ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑥𝐶𝑦𝐷 ) ) )
7 elin ( 𝑥 ∈ ( 𝐴𝐶 ) ↔ ( 𝑥𝐴𝑥𝐶 ) )
8 elin ( 𝑦 ∈ ( 𝐵𝐷 ) ↔ ( 𝑦𝐵𝑦𝐷 ) )
9 7 8 anbi12i ( ( 𝑥 ∈ ( 𝐴𝐶 ) ∧ 𝑦 ∈ ( 𝐵𝐷 ) ) ↔ ( ( 𝑥𝐴𝑥𝐶 ) ∧ ( 𝑦𝐵𝑦𝐷 ) ) )
10 3 6 9 3bitr4i ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × 𝐵 ) ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐶 × 𝐷 ) ) ↔ ( 𝑥 ∈ ( 𝐴𝐶 ) ∧ 𝑦 ∈ ( 𝐵𝐷 ) ) )
11 elin ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × 𝐷 ) ) ↔ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × 𝐵 ) ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐶 × 𝐷 ) ) )
12 opelxp ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( ( 𝐴𝐶 ) × ( 𝐵𝐷 ) ) ↔ ( 𝑥 ∈ ( 𝐴𝐶 ) ∧ 𝑦 ∈ ( 𝐵𝐷 ) ) )
13 10 11 12 3bitr4i ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × 𝐷 ) ) ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( ( 𝐴𝐶 ) × ( 𝐵𝐷 ) ) )
14 1 2 13 eqrelriiv ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × 𝐷 ) ) = ( ( 𝐴𝐶 ) × ( 𝐵𝐷 ) )