Step |
Hyp |
Ref |
Expression |
1 |
|
relinxp |
⊢ Rel ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × 𝐷 ) ) |
2 |
|
relxp |
⊢ Rel ( ( 𝐴 ∩ 𝐶 ) × ( 𝐵 ∩ 𝐷 ) ) |
3 |
|
an4 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) ) |
4 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
5 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐶 × 𝐷 ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) |
6 |
4 5
|
anbi12i |
⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐶 × 𝐷 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) ) |
7 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ) |
8 |
|
elin |
⊢ ( 𝑦 ∈ ( 𝐵 ∩ 𝐷 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) |
9 |
7 8
|
anbi12i |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ 𝑦 ∈ ( 𝐵 ∩ 𝐷 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) ) |
10 |
3 6 9
|
3bitr4i |
⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐶 × 𝐷 ) ) ↔ ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ 𝑦 ∈ ( 𝐵 ∩ 𝐷 ) ) ) |
11 |
|
elin |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × 𝐷 ) ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐶 × 𝐷 ) ) ) |
12 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 ∩ 𝐶 ) × ( 𝐵 ∩ 𝐷 ) ) ↔ ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ 𝑦 ∈ ( 𝐵 ∩ 𝐷 ) ) ) |
13 |
10 11 12
|
3bitr4i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × 𝐷 ) ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 ∩ 𝐶 ) × ( 𝐵 ∩ 𝐷 ) ) ) |
14 |
1 2 13
|
eqrelriiv |
⊢ ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × 𝐷 ) ) = ( ( 𝐴 ∩ 𝐶 ) × ( 𝐵 ∩ 𝐷 ) ) |