Step |
Hyp |
Ref |
Expression |
1 |
|
inopab |
⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } ∩ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) } |
2 |
|
an4 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) ) |
3 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ) |
4 |
|
elin |
⊢ ( 𝑦 ∈ ( 𝐵 ∩ 𝐷 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) |
5 |
3 4
|
anbi12i |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ 𝑦 ∈ ( 𝐵 ∩ 𝐷 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) ) |
6 |
2 5
|
bitr4i |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) ↔ ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ 𝑦 ∈ ( 𝐵 ∩ 𝐷 ) ) ) |
7 |
6
|
opabbii |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ 𝑦 ∈ ( 𝐵 ∩ 𝐷 ) ) } |
8 |
1 7
|
eqtri |
⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } ∩ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ 𝑦 ∈ ( 𝐵 ∩ 𝐷 ) ) } |
9 |
|
df-xp |
⊢ ( 𝐴 × 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } |
10 |
|
df-xp |
⊢ ( 𝐶 × 𝐷 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } |
11 |
9 10
|
ineq12i |
⊢ ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × 𝐷 ) ) = ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } ∩ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } ) |
12 |
|
df-xp |
⊢ ( ( 𝐴 ∩ 𝐶 ) × ( 𝐵 ∩ 𝐷 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ 𝑦 ∈ ( 𝐵 ∩ 𝐷 ) ) } |
13 |
8 11 12
|
3eqtr4i |
⊢ ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × 𝐷 ) ) = ( ( 𝐴 ∩ 𝐶 ) × ( 𝐵 ∩ 𝐷 ) ) |