| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							relinxp | 
							⊢ Rel  ( 𝑅  ∩  ( 𝐴  ×  𝐵 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							ssrel3 | 
							⊢ ( Rel  ( 𝑅  ∩  ( 𝐴  ×  𝐵 ) )  →  ( ( 𝑅  ∩  ( 𝐴  ×  𝐵 ) )  ⊆  ( 𝑆  ∩  ( 𝐴  ×  𝐵 ) )  ↔  ∀ 𝑥 ∀ 𝑦 ( 𝑥 ( 𝑅  ∩  ( 𝐴  ×  𝐵 ) ) 𝑦  →  𝑥 ( 𝑆  ∩  ( 𝐴  ×  𝐵 ) ) 𝑦 ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							ax-mp | 
							⊢ ( ( 𝑅  ∩  ( 𝐴  ×  𝐵 ) )  ⊆  ( 𝑆  ∩  ( 𝐴  ×  𝐵 ) )  ↔  ∀ 𝑥 ∀ 𝑦 ( 𝑥 ( 𝑅  ∩  ( 𝐴  ×  𝐵 ) ) 𝑦  →  𝑥 ( 𝑆  ∩  ( 𝐴  ×  𝐵 ) ) 𝑦 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							inxpss3 | 
							⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 ( 𝑅  ∩  ( 𝐴  ×  𝐵 ) ) 𝑦  →  𝑥 ( 𝑆  ∩  ( 𝐴  ×  𝐵 ) ) 𝑦 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑥 𝑅 𝑦  →  𝑥 𝑆 𝑦 ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							bitri | 
							⊢ ( ( 𝑅  ∩  ( 𝐴  ×  𝐵 ) )  ⊆  ( 𝑆  ∩  ( 𝐴  ×  𝐵 ) )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑥 𝑅 𝑦  →  𝑥 𝑆 𝑦 ) )  |