Description: Intersection with a Cartesian product is a subclass of restriction. (Contributed by Peter Mazsa, 19-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inxpssres | ⊢ ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝑅 ↾ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | ssv | ⊢ 𝐵 ⊆ V | |
| 3 | xpss12 | ⊢ ( ( 𝐴 ⊆ 𝐴 ∧ 𝐵 ⊆ V ) → ( 𝐴 × 𝐵 ) ⊆ ( 𝐴 × V ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 𝐴 × 𝐵 ) ⊆ ( 𝐴 × V ) |
| 5 | sslin | ⊢ ( ( 𝐴 × 𝐵 ) ⊆ ( 𝐴 × V ) → ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝑅 ∩ ( 𝐴 × V ) ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝑅 ∩ ( 𝐴 × V ) ) |
| 7 | df-res | ⊢ ( 𝑅 ↾ 𝐴 ) = ( 𝑅 ∩ ( 𝐴 × V ) ) | |
| 8 | 6 7 | sseqtrri | ⊢ ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝑅 ↾ 𝐴 ) |