Description: Intersection with a Cartesian product is a subclass of restriction. (Contributed by Peter Mazsa, 19-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | inxpssres | ⊢ ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝑅 ↾ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
2 | ssv | ⊢ 𝐵 ⊆ V | |
3 | xpss12 | ⊢ ( ( 𝐴 ⊆ 𝐴 ∧ 𝐵 ⊆ V ) → ( 𝐴 × 𝐵 ) ⊆ ( 𝐴 × V ) ) | |
4 | 1 2 3 | mp2an | ⊢ ( 𝐴 × 𝐵 ) ⊆ ( 𝐴 × V ) |
5 | sslin | ⊢ ( ( 𝐴 × 𝐵 ) ⊆ ( 𝐴 × V ) → ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝑅 ∩ ( 𝐴 × V ) ) ) | |
6 | 4 5 | ax-mp | ⊢ ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝑅 ∩ ( 𝐴 × V ) ) |
7 | df-res | ⊢ ( 𝑅 ↾ 𝐴 ) = ( 𝑅 ∩ ( 𝐴 × V ) ) | |
8 | 6 7 | sseqtrri | ⊢ ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝑅 ↾ 𝐴 ) |