Metamath Proof Explorer


Theorem inxpssres

Description: Intersection with a Cartesian product is a subclass of restriction. (Contributed by Peter Mazsa, 19-Jul-2019)

Ref Expression
Assertion inxpssres ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝑅𝐴 )

Proof

Step Hyp Ref Expression
1 ssid 𝐴𝐴
2 ssv 𝐵 ⊆ V
3 xpss12 ( ( 𝐴𝐴𝐵 ⊆ V ) → ( 𝐴 × 𝐵 ) ⊆ ( 𝐴 × V ) )
4 1 2 3 mp2an ( 𝐴 × 𝐵 ) ⊆ ( 𝐴 × V )
5 sslin ( ( 𝐴 × 𝐵 ) ⊆ ( 𝐴 × V ) → ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝑅 ∩ ( 𝐴 × V ) ) )
6 4 5 ax-mp ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝑅 ∩ ( 𝐴 × V ) )
7 df-res ( 𝑅𝐴 ) = ( 𝑅 ∩ ( 𝐴 × V ) )
8 6 7 sseqtrri ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝑅𝐴 )