Step |
Hyp |
Ref |
Expression |
1 |
|
ioccncflimc.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
2 |
|
ioccncflimc.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
ioccncflimc.altb |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
4 |
|
ioccncflimc.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,] 𝐵 ) –cn→ ℂ ) ) |
5 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
6 |
2
|
leidd |
⊢ ( 𝜑 → 𝐵 ≤ 𝐵 ) |
7 |
1 5 5 3 6
|
eliocd |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 (,] 𝐵 ) ) |
8 |
4 7
|
cnlimci |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) ) |
9 |
|
cncfrss |
⊢ ( 𝐹 ∈ ( ( 𝐴 (,] 𝐵 ) –cn→ ℂ ) → ( 𝐴 (,] 𝐵 ) ⊆ ℂ ) |
10 |
4 9
|
syl |
⊢ ( 𝜑 → ( 𝐴 (,] 𝐵 ) ⊆ ℂ ) |
11 |
|
ssid |
⊢ ℂ ⊆ ℂ |
12 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
13 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) |
14 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
15 |
12 13 14
|
cncfcn |
⊢ ( ( ( 𝐴 (,] 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 (,] 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ) ) |
16 |
10 11 15
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐴 (,] 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ) ) |
17 |
4 16
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ) ) |
18 |
12
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
19 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 (,] 𝐵 ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 (,] 𝐵 ) ) ) |
20 |
18 10 19
|
sylancr |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 (,] 𝐵 ) ) ) |
21 |
12
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
22 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
23 |
22
|
restid |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) ) |
24 |
21 23
|
ax-mp |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) |
25 |
24
|
cnfldtopon |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ∈ ( TopOn ‘ ℂ ) |
26 |
|
cncnp |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 (,] 𝐵 ) ) ∧ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ∈ ( TopOn ‘ ℂ ) ) → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ) ↔ ( 𝐹 : ( 𝐴 (,] 𝐵 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 (,] 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) CnP ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ) ‘ 𝑥 ) ) ) ) |
27 |
20 25 26
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ) ↔ ( 𝐹 : ( 𝐴 (,] 𝐵 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 (,] 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) CnP ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ) ‘ 𝑥 ) ) ) ) |
28 |
17 27
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 : ( 𝐴 (,] 𝐵 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 (,] 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) CnP ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) ) ‘ 𝑥 ) ) ) |
29 |
28
|
simpld |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,] 𝐵 ) ⟶ ℂ ) |
30 |
|
ioossioc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 (,] 𝐵 ) |
31 |
30
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 (,] 𝐵 ) ) |
32 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,] 𝐵 ) ∪ { 𝐵 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,] 𝐵 ) ∪ { 𝐵 } ) ) |
33 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
34 |
22
|
ntrtop |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ ) = ℂ ) |
35 |
21 34
|
ax-mp |
⊢ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ ) = ℂ |
36 |
|
undif |
⊢ ( ( 𝐴 (,] 𝐵 ) ⊆ ℂ ↔ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℂ ∖ ( 𝐴 (,] 𝐵 ) ) ) = ℂ ) |
37 |
10 36
|
sylib |
⊢ ( 𝜑 → ( ( 𝐴 (,] 𝐵 ) ∪ ( ℂ ∖ ( 𝐴 (,] 𝐵 ) ) ) = ℂ ) |
38 |
37
|
eqcomd |
⊢ ( 𝜑 → ℂ = ( ( 𝐴 (,] 𝐵 ) ∪ ( ℂ ∖ ( 𝐴 (,] 𝐵 ) ) ) ) |
39 |
38
|
fveq2d |
⊢ ( 𝜑 → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ ) = ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℂ ∖ ( 𝐴 (,] 𝐵 ) ) ) ) ) |
40 |
35 39
|
eqtr3id |
⊢ ( 𝜑 → ℂ = ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℂ ∖ ( 𝐴 (,] 𝐵 ) ) ) ) ) |
41 |
33 40
|
eleqtrd |
⊢ ( 𝜑 → 𝐵 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℂ ∖ ( 𝐴 (,] 𝐵 ) ) ) ) ) |
42 |
41 7
|
elind |
⊢ ( 𝜑 → 𝐵 ∈ ( ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℂ ∖ ( 𝐴 (,] 𝐵 ) ) ) ) ∩ ( 𝐴 (,] 𝐵 ) ) ) |
43 |
21
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ Top ) |
44 |
|
ssid |
⊢ ( 𝐴 (,] 𝐵 ) ⊆ ( 𝐴 (,] 𝐵 ) |
45 |
44
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,] 𝐵 ) ⊆ ( 𝐴 (,] 𝐵 ) ) |
46 |
22 13
|
restntr |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 (,] 𝐵 ) ⊆ ℂ ∧ ( 𝐴 (,] 𝐵 ) ⊆ ( 𝐴 (,] 𝐵 ) ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) ) ‘ ( 𝐴 (,] 𝐵 ) ) = ( ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℂ ∖ ( 𝐴 (,] 𝐵 ) ) ) ) ∩ ( 𝐴 (,] 𝐵 ) ) ) |
47 |
43 10 45 46
|
syl3anc |
⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) ) ‘ ( 𝐴 (,] 𝐵 ) ) = ( ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℂ ∖ ( 𝐴 (,] 𝐵 ) ) ) ) ∩ ( 𝐴 (,] 𝐵 ) ) ) |
48 |
42 47
|
eleqtrrd |
⊢ ( 𝜑 → 𝐵 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) ) ‘ ( 𝐴 (,] 𝐵 ) ) ) |
49 |
7
|
snssd |
⊢ ( 𝜑 → { 𝐵 } ⊆ ( 𝐴 (,] 𝐵 ) ) |
50 |
|
ssequn2 |
⊢ ( { 𝐵 } ⊆ ( 𝐴 (,] 𝐵 ) ↔ ( ( 𝐴 (,] 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 (,] 𝐵 ) ) |
51 |
49 50
|
sylib |
⊢ ( 𝜑 → ( ( 𝐴 (,] 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 (,] 𝐵 ) ) |
52 |
51
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 (,] 𝐵 ) = ( ( 𝐴 (,] 𝐵 ) ∪ { 𝐵 } ) ) |
53 |
52
|
oveq2d |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,] 𝐵 ) ∪ { 𝐵 } ) ) ) |
54 |
53
|
fveq2d |
⊢ ( 𝜑 → ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) ) = ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,] 𝐵 ) ∪ { 𝐵 } ) ) ) ) |
55 |
|
ioounsn |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 (,] 𝐵 ) ) |
56 |
1 5 3 55
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 (,] 𝐵 ) ) |
57 |
56
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 (,] 𝐵 ) = ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) |
58 |
54 57
|
fveq12d |
⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) ) ‘ ( 𝐴 (,] 𝐵 ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,] 𝐵 ) ∪ { 𝐵 } ) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ) |
59 |
48 58
|
eleqtrd |
⊢ ( 𝜑 → 𝐵 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,] 𝐵 ) ∪ { 𝐵 } ) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ) |
60 |
29 31 10 12 32 59
|
limcres |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐵 ) = ( 𝐹 limℂ 𝐵 ) ) |
61 |
8 60
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐵 ) ) |