| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ioccncflimc.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 2 |  | ioccncflimc.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | ioccncflimc.altb | ⊢ ( 𝜑  →  𝐴  <  𝐵 ) | 
						
							| 4 |  | ioccncflimc.f | ⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝐴 (,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 5 | 2 | rexrd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 6 | 2 | leidd | ⊢ ( 𝜑  →  𝐵  ≤  𝐵 ) | 
						
							| 7 | 1 5 5 3 6 | eliocd | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝐴 (,] 𝐵 ) ) | 
						
							| 8 | 4 7 | cnlimci | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐵 )  ∈  ( 𝐹  limℂ  𝐵 ) ) | 
						
							| 9 |  | cncfrss | ⊢ ( 𝐹  ∈  ( ( 𝐴 (,] 𝐵 ) –cn→ ℂ )  →  ( 𝐴 (,] 𝐵 )  ⊆  ℂ ) | 
						
							| 10 | 4 9 | syl | ⊢ ( 𝜑  →  ( 𝐴 (,] 𝐵 )  ⊆  ℂ ) | 
						
							| 11 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 12 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 13 |  | eqid | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,] 𝐵 ) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,] 𝐵 ) ) | 
						
							| 14 |  | eqid | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ℂ )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℂ ) | 
						
							| 15 | 12 13 14 | cncfcn | ⊢ ( ( ( 𝐴 (,] 𝐵 )  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( ( 𝐴 (,] 𝐵 ) –cn→ ℂ )  =  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,] 𝐵 ) )  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ℂ ) ) ) | 
						
							| 16 | 10 11 15 | sylancl | ⊢ ( 𝜑  →  ( ( 𝐴 (,] 𝐵 ) –cn→ ℂ )  =  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,] 𝐵 ) )  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ℂ ) ) ) | 
						
							| 17 | 4 16 | eleqtrd | ⊢ ( 𝜑  →  𝐹  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,] 𝐵 ) )  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ℂ ) ) ) | 
						
							| 18 | 12 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) | 
						
							| 19 |  | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ )  ∧  ( 𝐴 (,] 𝐵 )  ⊆  ℂ )  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,] 𝐵 ) )  ∈  ( TopOn ‘ ( 𝐴 (,] 𝐵 ) ) ) | 
						
							| 20 | 18 10 19 | sylancr | ⊢ ( 𝜑  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,] 𝐵 ) )  ∈  ( TopOn ‘ ( 𝐴 (,] 𝐵 ) ) ) | 
						
							| 21 | 12 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld )  ∈  Top | 
						
							| 22 |  | unicntop | ⊢ ℂ  =  ∪  ( TopOpen ‘ ℂfld ) | 
						
							| 23 | 22 | restid | ⊢ ( ( TopOpen ‘ ℂfld )  ∈  Top  →  ( ( TopOpen ‘ ℂfld )  ↾t  ℂ )  =  ( TopOpen ‘ ℂfld ) ) | 
						
							| 24 | 21 23 | ax-mp | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ℂ )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 25 | 24 | cnfldtopon | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ℂ )  ∈  ( TopOn ‘ ℂ ) | 
						
							| 26 |  | cncnp | ⊢ ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,] 𝐵 ) )  ∈  ( TopOn ‘ ( 𝐴 (,] 𝐵 ) )  ∧  ( ( TopOpen ‘ ℂfld )  ↾t  ℂ )  ∈  ( TopOn ‘ ℂ ) )  →  ( 𝐹  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,] 𝐵 ) )  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ℂ ) )  ↔  ( 𝐹 : ( 𝐴 (,] 𝐵 ) ⟶ ℂ  ∧  ∀ 𝑥  ∈  ( 𝐴 (,] 𝐵 ) 𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,] 𝐵 ) )  CnP  ( ( TopOpen ‘ ℂfld )  ↾t  ℂ ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 27 | 20 25 26 | sylancl | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,] 𝐵 ) )  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ℂ ) )  ↔  ( 𝐹 : ( 𝐴 (,] 𝐵 ) ⟶ ℂ  ∧  ∀ 𝑥  ∈  ( 𝐴 (,] 𝐵 ) 𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,] 𝐵 ) )  CnP  ( ( TopOpen ‘ ℂfld )  ↾t  ℂ ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 28 | 17 27 | mpbid | ⊢ ( 𝜑  →  ( 𝐹 : ( 𝐴 (,] 𝐵 ) ⟶ ℂ  ∧  ∀ 𝑥  ∈  ( 𝐴 (,] 𝐵 ) 𝐹  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,] 𝐵 ) )  CnP  ( ( TopOpen ‘ ℂfld )  ↾t  ℂ ) ) ‘ 𝑥 ) ) ) | 
						
							| 29 | 28 | simpld | ⊢ ( 𝜑  →  𝐹 : ( 𝐴 (,] 𝐵 ) ⟶ ℂ ) | 
						
							| 30 |  | ioossioc | ⊢ ( 𝐴 (,) 𝐵 )  ⊆  ( 𝐴 (,] 𝐵 ) | 
						
							| 31 | 30 | a1i | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ⊆  ( 𝐴 (,] 𝐵 ) ) | 
						
							| 32 |  | eqid | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( 𝐴 (,] 𝐵 )  ∪  { 𝐵 } ) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( 𝐴 (,] 𝐵 )  ∪  { 𝐵 } ) ) | 
						
							| 33 | 2 | recnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 34 | 22 | ntrtop | ⊢ ( ( TopOpen ‘ ℂfld )  ∈  Top  →  ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ )  =  ℂ ) | 
						
							| 35 | 21 34 | ax-mp | ⊢ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ )  =  ℂ | 
						
							| 36 |  | undif | ⊢ ( ( 𝐴 (,] 𝐵 )  ⊆  ℂ  ↔  ( ( 𝐴 (,] 𝐵 )  ∪  ( ℂ  ∖  ( 𝐴 (,] 𝐵 ) ) )  =  ℂ ) | 
						
							| 37 | 10 36 | sylib | ⊢ ( 𝜑  →  ( ( 𝐴 (,] 𝐵 )  ∪  ( ℂ  ∖  ( 𝐴 (,] 𝐵 ) ) )  =  ℂ ) | 
						
							| 38 | 37 | eqcomd | ⊢ ( 𝜑  →  ℂ  =  ( ( 𝐴 (,] 𝐵 )  ∪  ( ℂ  ∖  ( 𝐴 (,] 𝐵 ) ) ) ) | 
						
							| 39 | 38 | fveq2d | ⊢ ( 𝜑  →  ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ )  =  ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝐴 (,] 𝐵 )  ∪  ( ℂ  ∖  ( 𝐴 (,] 𝐵 ) ) ) ) ) | 
						
							| 40 | 35 39 | eqtr3id | ⊢ ( 𝜑  →  ℂ  =  ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝐴 (,] 𝐵 )  ∪  ( ℂ  ∖  ( 𝐴 (,] 𝐵 ) ) ) ) ) | 
						
							| 41 | 33 40 | eleqtrd | ⊢ ( 𝜑  →  𝐵  ∈  ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝐴 (,] 𝐵 )  ∪  ( ℂ  ∖  ( 𝐴 (,] 𝐵 ) ) ) ) ) | 
						
							| 42 | 41 7 | elind | ⊢ ( 𝜑  →  𝐵  ∈  ( ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝐴 (,] 𝐵 )  ∪  ( ℂ  ∖  ( 𝐴 (,] 𝐵 ) ) ) )  ∩  ( 𝐴 (,] 𝐵 ) ) ) | 
						
							| 43 | 21 | a1i | ⊢ ( 𝜑  →  ( TopOpen ‘ ℂfld )  ∈  Top ) | 
						
							| 44 |  | ssid | ⊢ ( 𝐴 (,] 𝐵 )  ⊆  ( 𝐴 (,] 𝐵 ) | 
						
							| 45 | 44 | a1i | ⊢ ( 𝜑  →  ( 𝐴 (,] 𝐵 )  ⊆  ( 𝐴 (,] 𝐵 ) ) | 
						
							| 46 | 22 13 | restntr | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  Top  ∧  ( 𝐴 (,] 𝐵 )  ⊆  ℂ  ∧  ( 𝐴 (,] 𝐵 )  ⊆  ( 𝐴 (,] 𝐵 ) )  →  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,] 𝐵 ) ) ) ‘ ( 𝐴 (,] 𝐵 ) )  =  ( ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝐴 (,] 𝐵 )  ∪  ( ℂ  ∖  ( 𝐴 (,] 𝐵 ) ) ) )  ∩  ( 𝐴 (,] 𝐵 ) ) ) | 
						
							| 47 | 43 10 45 46 | syl3anc | ⊢ ( 𝜑  →  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,] 𝐵 ) ) ) ‘ ( 𝐴 (,] 𝐵 ) )  =  ( ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝐴 (,] 𝐵 )  ∪  ( ℂ  ∖  ( 𝐴 (,] 𝐵 ) ) ) )  ∩  ( 𝐴 (,] 𝐵 ) ) ) | 
						
							| 48 | 42 47 | eleqtrrd | ⊢ ( 𝜑  →  𝐵  ∈  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,] 𝐵 ) ) ) ‘ ( 𝐴 (,] 𝐵 ) ) ) | 
						
							| 49 | 7 | snssd | ⊢ ( 𝜑  →  { 𝐵 }  ⊆  ( 𝐴 (,] 𝐵 ) ) | 
						
							| 50 |  | ssequn2 | ⊢ ( { 𝐵 }  ⊆  ( 𝐴 (,] 𝐵 )  ↔  ( ( 𝐴 (,] 𝐵 )  ∪  { 𝐵 } )  =  ( 𝐴 (,] 𝐵 ) ) | 
						
							| 51 | 49 50 | sylib | ⊢ ( 𝜑  →  ( ( 𝐴 (,] 𝐵 )  ∪  { 𝐵 } )  =  ( 𝐴 (,] 𝐵 ) ) | 
						
							| 52 | 51 | eqcomd | ⊢ ( 𝜑  →  ( 𝐴 (,] 𝐵 )  =  ( ( 𝐴 (,] 𝐵 )  ∪  { 𝐵 } ) ) | 
						
							| 53 | 52 | oveq2d | ⊢ ( 𝜑  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,] 𝐵 ) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( 𝐴 (,] 𝐵 )  ∪  { 𝐵 } ) ) ) | 
						
							| 54 | 53 | fveq2d | ⊢ ( 𝜑  →  ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,] 𝐵 ) ) )  =  ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( 𝐴 (,] 𝐵 )  ∪  { 𝐵 } ) ) ) ) | 
						
							| 55 |  | ioounsn | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  →  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } )  =  ( 𝐴 (,] 𝐵 ) ) | 
						
							| 56 | 1 5 3 55 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } )  =  ( 𝐴 (,] 𝐵 ) ) | 
						
							| 57 | 56 | eqcomd | ⊢ ( 𝜑  →  ( 𝐴 (,] 𝐵 )  =  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } ) ) | 
						
							| 58 | 54 57 | fveq12d | ⊢ ( 𝜑  →  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 (,] 𝐵 ) ) ) ‘ ( 𝐴 (,] 𝐵 ) )  =  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( 𝐴 (,] 𝐵 )  ∪  { 𝐵 } ) ) ) ‘ ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } ) ) ) | 
						
							| 59 | 48 58 | eleqtrd | ⊢ ( 𝜑  →  𝐵  ∈  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( 𝐴 (,] 𝐵 )  ∪  { 𝐵 } ) ) ) ‘ ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } ) ) ) | 
						
							| 60 | 29 31 10 12 32 59 | limcres | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  ( 𝐴 (,) 𝐵 ) )  limℂ  𝐵 )  =  ( 𝐹  limℂ  𝐵 ) ) | 
						
							| 61 | 8 60 | eleqtrrd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐵 )  ∈  ( ( 𝐹  ↾  ( 𝐴 (,) 𝐵 ) )  limℂ  𝐵 ) ) |