| Step | Hyp | Ref | Expression | 
						
							| 1 |  | exmid | ⊢ ( 𝐴  <  𝐵  ∨  ¬  𝐴  <  𝐵 ) | 
						
							| 2 |  | xrltle | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴  <  𝐵  →  𝐴  ≤  𝐵 ) ) | 
						
							| 3 | 2 | imp | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  𝐴  ≤  𝐵 ) | 
						
							| 4 | 3 | 3adantl3 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  𝐴  ≤  𝐵 ) | 
						
							| 5 |  | iocinioc2 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  ( ( 𝐴 (,] 𝐶 )  ∩  ( 𝐵 (,] 𝐶 ) )  =  ( 𝐵 (,] 𝐶 ) ) | 
						
							| 6 | 4 5 | syldan | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  <  𝐵 )  →  ( ( 𝐴 (,] 𝐶 )  ∩  ( 𝐵 (,] 𝐶 ) )  =  ( 𝐵 (,] 𝐶 ) ) | 
						
							| 7 | 6 | ex | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝐴  <  𝐵  →  ( ( 𝐴 (,] 𝐶 )  ∩  ( 𝐵 (,] 𝐶 ) )  =  ( 𝐵 (,] 𝐶 ) ) ) | 
						
							| 8 | 7 | ancld | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝐴  <  𝐵  →  ( 𝐴  <  𝐵  ∧  ( ( 𝐴 (,] 𝐶 )  ∩  ( 𝐵 (,] 𝐶 ) )  =  ( 𝐵 (,] 𝐶 ) ) ) ) | 
						
							| 9 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ¬  𝐴  <  𝐵 )  →  𝐵  ∈  ℝ* ) | 
						
							| 10 |  | simpl1 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ¬  𝐴  <  𝐵 )  →  𝐴  ∈  ℝ* ) | 
						
							| 11 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ¬  𝐴  <  𝐵 )  →  ¬  𝐴  <  𝐵 ) | 
						
							| 12 |  | xrlenlt | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( 𝐵  ≤  𝐴  ↔  ¬  𝐴  <  𝐵 ) ) | 
						
							| 13 | 12 | biimpar | ⊢ ( ( ( 𝐵  ∈  ℝ*  ∧  𝐴  ∈  ℝ* )  ∧  ¬  𝐴  <  𝐵 )  →  𝐵  ≤  𝐴 ) | 
						
							| 14 | 9 10 11 13 | syl21anc | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ¬  𝐴  <  𝐵 )  →  𝐵  ≤  𝐴 ) | 
						
							| 15 |  | 3ancoma | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐴  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ↔  ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* ) ) | 
						
							| 16 |  | incom | ⊢ ( ( 𝐵 (,] 𝐶 )  ∩  ( 𝐴 (,] 𝐶 ) )  =  ( ( 𝐴 (,] 𝐶 )  ∩  ( 𝐵 (,] 𝐶 ) ) | 
						
							| 17 |  | iocinioc2 | ⊢ ( ( ( 𝐵  ∈  ℝ*  ∧  𝐴  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐵  ≤  𝐴 )  →  ( ( 𝐵 (,] 𝐶 )  ∩  ( 𝐴 (,] 𝐶 ) )  =  ( 𝐴 (,] 𝐶 ) ) | 
						
							| 18 | 16 17 | eqtr3id | ⊢ ( ( ( 𝐵  ∈  ℝ*  ∧  𝐴  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐵  ≤  𝐴 )  →  ( ( 𝐴 (,] 𝐶 )  ∩  ( 𝐵 (,] 𝐶 ) )  =  ( 𝐴 (,] 𝐶 ) ) | 
						
							| 19 | 15 18 | sylanbr | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐵  ≤  𝐴 )  →  ( ( 𝐴 (,] 𝐶 )  ∩  ( 𝐵 (,] 𝐶 ) )  =  ( 𝐴 (,] 𝐶 ) ) | 
						
							| 20 | 14 19 | syldan | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ¬  𝐴  <  𝐵 )  →  ( ( 𝐴 (,] 𝐶 )  ∩  ( 𝐵 (,] 𝐶 ) )  =  ( 𝐴 (,] 𝐶 ) ) | 
						
							| 21 | 20 | ex | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( ¬  𝐴  <  𝐵  →  ( ( 𝐴 (,] 𝐶 )  ∩  ( 𝐵 (,] 𝐶 ) )  =  ( 𝐴 (,] 𝐶 ) ) ) | 
						
							| 22 | 21 | ancld | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( ¬  𝐴  <  𝐵  →  ( ¬  𝐴  <  𝐵  ∧  ( ( 𝐴 (,] 𝐶 )  ∩  ( 𝐵 (,] 𝐶 ) )  =  ( 𝐴 (,] 𝐶 ) ) ) ) | 
						
							| 23 | 8 22 | orim12d | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( ( 𝐴  <  𝐵  ∨  ¬  𝐴  <  𝐵 )  →  ( ( 𝐴  <  𝐵  ∧  ( ( 𝐴 (,] 𝐶 )  ∩  ( 𝐵 (,] 𝐶 ) )  =  ( 𝐵 (,] 𝐶 ) )  ∨  ( ¬  𝐴  <  𝐵  ∧  ( ( 𝐴 (,] 𝐶 )  ∩  ( 𝐵 (,] 𝐶 ) )  =  ( 𝐴 (,] 𝐶 ) ) ) ) ) | 
						
							| 24 | 1 23 | mpi | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( ( 𝐴  <  𝐵  ∧  ( ( 𝐴 (,] 𝐶 )  ∩  ( 𝐵 (,] 𝐶 ) )  =  ( 𝐵 (,] 𝐶 ) )  ∨  ( ¬  𝐴  <  𝐵  ∧  ( ( 𝐴 (,] 𝐶 )  ∩  ( 𝐵 (,] 𝐶 ) )  =  ( 𝐴 (,] 𝐶 ) ) ) ) | 
						
							| 25 |  | eqif | ⊢ ( ( ( 𝐴 (,] 𝐶 )  ∩  ( 𝐵 (,] 𝐶 ) )  =  if ( 𝐴  <  𝐵 ,  ( 𝐵 (,] 𝐶 ) ,  ( 𝐴 (,] 𝐶 ) )  ↔  ( ( 𝐴  <  𝐵  ∧  ( ( 𝐴 (,] 𝐶 )  ∩  ( 𝐵 (,] 𝐶 ) )  =  ( 𝐵 (,] 𝐶 ) )  ∨  ( ¬  𝐴  <  𝐵  ∧  ( ( 𝐴 (,] 𝐶 )  ∩  ( 𝐵 (,] 𝐶 ) )  =  ( 𝐴 (,] 𝐶 ) ) ) ) | 
						
							| 26 | 24 25 | sylibr | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( ( 𝐴 (,] 𝐶 )  ∩  ( 𝐵 (,] 𝐶 ) )  =  if ( 𝐴  <  𝐵 ,  ( 𝐵 (,] 𝐶 ) ,  ( 𝐴 (,] 𝐶 ) ) ) |