| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elin | ⊢ ( 𝑥  ∈  ( ( 𝐴 (,] 𝐶 )  ∩  ( 𝐵 (,] 𝐶 ) )  ↔  ( 𝑥  ∈  ( 𝐴 (,] 𝐶 )  ∧  𝑥  ∈  ( 𝐵 (,] 𝐶 ) ) ) | 
						
							| 2 |  | simpl1 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  𝐴  ∈  ℝ* ) | 
						
							| 3 |  | simpl3 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  𝐶  ∈  ℝ* ) | 
						
							| 4 |  | elioc1 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝑥  ∈  ( 𝐴 (,] 𝐶 )  ↔  ( 𝑥  ∈  ℝ*  ∧  𝐴  <  𝑥  ∧  𝑥  ≤  𝐶 ) ) ) | 
						
							| 5 | 2 3 4 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  ( 𝑥  ∈  ( 𝐴 (,] 𝐶 )  ↔  ( 𝑥  ∈  ℝ*  ∧  𝐴  <  𝑥  ∧  𝑥  ≤  𝐶 ) ) ) | 
						
							| 6 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  𝐵  ∈  ℝ* ) | 
						
							| 7 |  | elioc1 | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝑥  ∈  ( 𝐵 (,] 𝐶 )  ↔  ( 𝑥  ∈  ℝ*  ∧  𝐵  <  𝑥  ∧  𝑥  ≤  𝐶 ) ) ) | 
						
							| 8 | 6 3 7 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  ( 𝑥  ∈  ( 𝐵 (,] 𝐶 )  ↔  ( 𝑥  ∈  ℝ*  ∧  𝐵  <  𝑥  ∧  𝑥  ≤  𝐶 ) ) ) | 
						
							| 9 | 5 8 | anbi12d | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  ( ( 𝑥  ∈  ( 𝐴 (,] 𝐶 )  ∧  𝑥  ∈  ( 𝐵 (,] 𝐶 ) )  ↔  ( ( 𝑥  ∈  ℝ*  ∧  𝐴  <  𝑥  ∧  𝑥  ≤  𝐶 )  ∧  ( 𝑥  ∈  ℝ*  ∧  𝐵  <  𝑥  ∧  𝑥  ≤  𝐶 ) ) ) ) | 
						
							| 10 |  | simp31 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  ∈  ℝ*  ∧  𝐵  <  𝑥  ∧  𝑥  ≤  𝐶 ) )  →  𝑥  ∈  ℝ* ) | 
						
							| 11 | 2 | 3adant3 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  ∈  ℝ*  ∧  𝐵  <  𝑥  ∧  𝑥  ≤  𝐶 ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 12 | 6 | 3adant3 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  ∈  ℝ*  ∧  𝐵  <  𝑥  ∧  𝑥  ≤  𝐶 ) )  →  𝐵  ∈  ℝ* ) | 
						
							| 13 |  | simp2 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  ∈  ℝ*  ∧  𝐵  <  𝑥  ∧  𝑥  ≤  𝐶 ) )  →  𝐴  ≤  𝐵 ) | 
						
							| 14 |  | simp32 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  ∈  ℝ*  ∧  𝐵  <  𝑥  ∧  𝑥  ≤  𝐶 ) )  →  𝐵  <  𝑥 ) | 
						
							| 15 | 11 12 10 13 14 | xrlelttrd | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  ∈  ℝ*  ∧  𝐵  <  𝑥  ∧  𝑥  ≤  𝐶 ) )  →  𝐴  <  𝑥 ) | 
						
							| 16 |  | simp33 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  ∈  ℝ*  ∧  𝐵  <  𝑥  ∧  𝑥  ≤  𝐶 ) )  →  𝑥  ≤  𝐶 ) | 
						
							| 17 | 10 15 16 | 3jca | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  ∈  ℝ*  ∧  𝐵  <  𝑥  ∧  𝑥  ≤  𝐶 ) )  →  ( 𝑥  ∈  ℝ*  ∧  𝐴  <  𝑥  ∧  𝑥  ≤  𝐶 ) ) | 
						
							| 18 | 17 | 3expia | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  ( ( 𝑥  ∈  ℝ*  ∧  𝐵  <  𝑥  ∧  𝑥  ≤  𝐶 )  →  ( 𝑥  ∈  ℝ*  ∧  𝐴  <  𝑥  ∧  𝑥  ≤  𝐶 ) ) ) | 
						
							| 19 | 18 | pm4.71rd | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  ( ( 𝑥  ∈  ℝ*  ∧  𝐵  <  𝑥  ∧  𝑥  ≤  𝐶 )  ↔  ( ( 𝑥  ∈  ℝ*  ∧  𝐴  <  𝑥  ∧  𝑥  ≤  𝐶 )  ∧  ( 𝑥  ∈  ℝ*  ∧  𝐵  <  𝑥  ∧  𝑥  ≤  𝐶 ) ) ) ) | 
						
							| 20 | 9 19 | bitr4d | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  ( ( 𝑥  ∈  ( 𝐴 (,] 𝐶 )  ∧  𝑥  ∈  ( 𝐵 (,] 𝐶 ) )  ↔  ( 𝑥  ∈  ℝ*  ∧  𝐵  <  𝑥  ∧  𝑥  ≤  𝐶 ) ) ) | 
						
							| 21 | 1 20 | bitrid | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  ( 𝑥  ∈  ( ( 𝐴 (,] 𝐶 )  ∩  ( 𝐵 (,] 𝐶 ) )  ↔  ( 𝑥  ∈  ℝ*  ∧  𝐵  <  𝑥  ∧  𝑥  ≤  𝐶 ) ) ) | 
						
							| 22 | 21 8 | bitr4d | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  ( 𝑥  ∈  ( ( 𝐴 (,] 𝐶 )  ∩  ( 𝐵 (,] 𝐶 ) )  ↔  𝑥  ∈  ( 𝐵 (,] 𝐶 ) ) ) | 
						
							| 23 | 22 | eqrdv | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐴  ≤  𝐵 )  →  ( ( 𝐴 (,] 𝐶 )  ∩  ( 𝐵 (,] 𝐶 ) )  =  ( 𝐵 (,] 𝐶 ) ) |