Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
⊢ ( 𝑥 ∈ ( ( 𝐴 (,] 𝐶 ) ∩ ( 𝐵 (,] 𝐶 ) ) ↔ ( 𝑥 ∈ ( 𝐴 (,] 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ) |
2 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ* ) |
3 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → 𝐶 ∈ ℝ* ) |
4 |
|
elioc1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 (,] 𝐶 ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) ) |
5 |
2 3 4
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝑥 ∈ ( 𝐴 (,] 𝐶 ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) ) |
6 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ* ) |
7 |
|
elioc1 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐵 < 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) ) |
8 |
6 3 7
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐵 < 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) ) |
9 |
5 8
|
anbi12d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝑥 ∈ ( 𝐴 (,] 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ↔ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∧ ( 𝑥 ∈ ℝ* ∧ 𝐵 < 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) ) ) |
10 |
|
simp31 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 ∈ ℝ* ∧ 𝐵 < 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → 𝑥 ∈ ℝ* ) |
11 |
2
|
3adant3 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 ∈ ℝ* ∧ 𝐵 < 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → 𝐴 ∈ ℝ* ) |
12 |
6
|
3adant3 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 ∈ ℝ* ∧ 𝐵 < 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → 𝐵 ∈ ℝ* ) |
13 |
|
simp2 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 ∈ ℝ* ∧ 𝐵 < 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → 𝐴 ≤ 𝐵 ) |
14 |
|
simp32 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 ∈ ℝ* ∧ 𝐵 < 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → 𝐵 < 𝑥 ) |
15 |
11 12 10 13 14
|
xrlelttrd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 ∈ ℝ* ∧ 𝐵 < 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → 𝐴 < 𝑥 ) |
16 |
|
simp33 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 ∈ ℝ* ∧ 𝐵 < 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → 𝑥 ≤ 𝐶 ) |
17 |
10 15 16
|
3jca |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 ∈ ℝ* ∧ 𝐵 < 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → ( 𝑥 ∈ ℝ* ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) |
18 |
17
|
3expia |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝑥 ∈ ℝ* ∧ 𝐵 < 𝑥 ∧ 𝑥 ≤ 𝐶 ) → ( 𝑥 ∈ ℝ* ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) ) |
19 |
18
|
pm4.71rd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝑥 ∈ ℝ* ∧ 𝐵 < 𝑥 ∧ 𝑥 ≤ 𝐶 ) ↔ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∧ ( 𝑥 ∈ ℝ* ∧ 𝐵 < 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) ) ) |
20 |
9 19
|
bitr4d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝑥 ∈ ( 𝐴 (,] 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐵 < 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) ) |
21 |
1 20
|
syl5bb |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝑥 ∈ ( ( 𝐴 (,] 𝐶 ) ∩ ( 𝐵 (,] 𝐶 ) ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐵 < 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) ) |
22 |
21 8
|
bitr4d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝑥 ∈ ( ( 𝐴 (,] 𝐶 ) ∩ ( 𝐵 (,] 𝐶 ) ) ↔ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ) |
23 |
22
|
eqrdv |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 (,] 𝐶 ) ∩ ( 𝐵 (,] 𝐶 ) ) = ( 𝐵 (,] 𝐶 ) ) |