Step |
Hyp |
Ref |
Expression |
1 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
2 |
1
|
a1i |
⊢ ( 𝐴 ∈ ℝ → -∞ ∈ ℝ* ) |
3 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
4 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
5 |
4
|
a1i |
⊢ ( 𝐴 ∈ ℝ → +∞ ∈ ℝ* ) |
6 |
|
mnflt |
⊢ ( 𝐴 ∈ ℝ → -∞ < 𝐴 ) |
7 |
|
ltpnf |
⊢ ( 𝐴 ∈ ℝ → 𝐴 < +∞ ) |
8 |
|
df-ioc |
⊢ (,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) |
9 |
|
df-ioo |
⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
10 |
|
xrltnle |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 < 𝑤 ↔ ¬ 𝑤 ≤ 𝐴 ) ) |
11 |
|
xrlelttr |
⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝑤 ≤ 𝐴 ∧ 𝐴 < +∞ ) → 𝑤 < +∞ ) ) |
12 |
|
xrlttr |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( -∞ < 𝐴 ∧ 𝐴 < 𝑤 ) → -∞ < 𝑤 ) ) |
13 |
8 9 10 9 11 12
|
ixxun |
⊢ ( ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ) → ( ( -∞ (,] 𝐴 ) ∪ ( 𝐴 (,) +∞ ) ) = ( -∞ (,) +∞ ) ) |
14 |
2 3 5 6 7 13
|
syl32anc |
⊢ ( 𝐴 ∈ ℝ → ( ( -∞ (,] 𝐴 ) ∪ ( 𝐴 (,) +∞ ) ) = ( -∞ (,) +∞ ) ) |
15 |
|
ioomax |
⊢ ( -∞ (,) +∞ ) = ℝ |
16 |
14 15
|
eqtrdi |
⊢ ( 𝐴 ∈ ℝ → ( ( -∞ (,] 𝐴 ) ∪ ( 𝐴 (,) +∞ ) ) = ℝ ) |
17 |
|
iocssre |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ ) → ( -∞ (,] 𝐴 ) ⊆ ℝ ) |
18 |
1 17
|
mpan |
⊢ ( 𝐴 ∈ ℝ → ( -∞ (,] 𝐴 ) ⊆ ℝ ) |
19 |
8 9 10
|
ixxdisj |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( -∞ (,] 𝐴 ) ∩ ( 𝐴 (,) +∞ ) ) = ∅ ) |
20 |
1 3 5 19
|
mp3an2i |
⊢ ( 𝐴 ∈ ℝ → ( ( -∞ (,] 𝐴 ) ∩ ( 𝐴 (,) +∞ ) ) = ∅ ) |
21 |
|
uneqdifeq |
⊢ ( ( ( -∞ (,] 𝐴 ) ⊆ ℝ ∧ ( ( -∞ (,] 𝐴 ) ∩ ( 𝐴 (,) +∞ ) ) = ∅ ) → ( ( ( -∞ (,] 𝐴 ) ∪ ( 𝐴 (,) +∞ ) ) = ℝ ↔ ( ℝ ∖ ( -∞ (,] 𝐴 ) ) = ( 𝐴 (,) +∞ ) ) ) |
22 |
18 20 21
|
syl2anc |
⊢ ( 𝐴 ∈ ℝ → ( ( ( -∞ (,] 𝐴 ) ∪ ( 𝐴 (,) +∞ ) ) = ℝ ↔ ( ℝ ∖ ( -∞ (,] 𝐴 ) ) = ( 𝐴 (,) +∞ ) ) ) |
23 |
16 22
|
mpbid |
⊢ ( 𝐴 ∈ ℝ → ( ℝ ∖ ( -∞ (,] 𝐴 ) ) = ( 𝐴 (,) +∞ ) ) |
24 |
|
iooretop |
⊢ ( 𝐴 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) |
25 |
23 24
|
eqeltrdi |
⊢ ( 𝐴 ∈ ℝ → ( ℝ ∖ ( -∞ (,] 𝐴 ) ) ∈ ( topGen ‘ ran (,) ) ) |
26 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
27 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
28 |
27
|
iscld2 |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( -∞ (,] 𝐴 ) ⊆ ℝ ) → ( ( -∞ (,] 𝐴 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ↔ ( ℝ ∖ ( -∞ (,] 𝐴 ) ) ∈ ( topGen ‘ ran (,) ) ) ) |
29 |
26 18 28
|
sylancr |
⊢ ( 𝐴 ∈ ℝ → ( ( -∞ (,] 𝐴 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ↔ ( ℝ ∖ ( -∞ (,] 𝐴 ) ) ∈ ( topGen ‘ ran (,) ) ) ) |
30 |
25 29
|
mpbird |
⊢ ( 𝐴 ∈ ℝ → ( -∞ (,] 𝐴 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |