Metamath Proof Explorer


Theorem iocssre

Description: A closed-above interval with real upper bound is a set of reals. (Contributed by FL, 29-May-2014)

Ref Expression
Assertion iocssre ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ) → ( 𝐴 (,] 𝐵 ) ⊆ ℝ )

Proof

Step Hyp Ref Expression
1 elioc2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵 ) ) )
2 1 biimp3a ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵 ) )
3 2 simp1d ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝑥 ∈ ℝ )
4 3 3expia ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 (,] 𝐵 ) → 𝑥 ∈ ℝ ) )
5 4 ssrdv ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ) → ( 𝐴 (,] 𝐵 ) ⊆ ℝ )